The Origin of Generalised Mass-Energy Equation $\Delta E = A c^2 \Delta M$; its mathematical justification and application in General physics and Cosmology.

Ajay Sharma
Community Science Centre. POST BOX 107 GPO Directorate of Education. Shimla 171001 HP INDIA
Email physicsajay@yahoo.com, phya@indiatimes.com
PACS 03.30.+p, 04.20.-q, 24.10.Jv, 98.54.Aj

Abstract

Einstein derived (in Sep 1905 paper), an equation between light energy (L) emitted and decrease in mass (Δm) of body i.e. $\Delta m = L / c^2$. It theorizes when light energy (L) is emanated from luminous body, then mass of body decreases i.e. mass is converted to light energy and this equation is speculative origin of $\Delta E = c^2 \Delta m$. In blatant way the other predictions from the same mathematical derivation under logical conditions, contradicts the law of conservation of matter and energy. For example, it is equally feasible (as feasible as Dirac’s prediction of positron) from the same mathematical derivation that the mass of source must also INCREASE ($\Delta m = -0.03490L/cv + L/c^2$) or remain the SAME ($\Delta m = 0$) when it emits light energy. In clearly defiance way, it implies that in some cases mass of body inherently increases when energy is emitted or energy is emitted from body without change in mass. Then Einstein speculated general Mass Energy Equivalence $\Delta E = c^2 \Delta M$ from it without mathematical proof. Further an alternate equation i.e. $\Delta E = A c^2 \Delta M$, has been purposely derived, in entirely different and flawless ways taking in account the existing theoretical concepts and experimental results. $\Delta E = A c^2 \Delta M$ implies that energy emitted on annihilation of mass (or vice versa) can be equal, less and more than predicted by Einstein’s equation. It successfully explains the energy emitted (10^{45}J) in Gamma Ray Bursts (duration 0.1s-100s) with high value of A i.e. 2.57×10^{18}, similarly energy emitted by quasars and supernovas etc. The energy emitted by Quasars (15.56×10^{41}J) in extremely small region can be explained with value of A as 4×10^{16}. Recent work at SLAC confirmed discovery of a new particle, whose mass is far less than current estimates, the same can be explained with help of equation $\Delta E = A c^2 \Delta M$ with value of A more then one. $\Delta E = A c^2 \Delta M$, is the first equation which mathematically explains that mass of universe 10^{55}kg was created from dwindling amount of energy (10^{-44}J or less) with value of A 2.568×10^{-471} J or less. Whereas $E = \Delta mc^2$ predicts the mass of universe 10^{55}kg was originated from energy 9×10^{71} J, plus infinitely large energy which condensed mass to a point and caused explosion. Einstein’s $\Delta E = c^2 \Delta M$ is not confirmed in
chemical reactions, but regarded as true which is unscientific. If one gram of wood or paper or petrol is burnt (specifically annihilated) under controlled conditions, and just 10^{-9} kg is converted into energy then energy (9×10^7 J is equal to 2.15×10^4 kcal) emitted can push a body of mass 1 kg to a distance of 9×10^7 m (9×10^4 km) or heat water equal to 2.15×10^4 kg through 1°C. If energy released in chemical or any reaction (at any stage) is found less than Einstein’s equation $\Delta E = c^2 \Delta M$, then value of A less than one in $\Delta E = Ac^2 \Delta M$ will be confirmed. All these aspects are logically discussed here thus Einstein’s unfinished task has been completed.

1.0 Einstein’s Light Energy-Mass equivalence $\Delta m = L/c^2$ (Sep. 1905 paper)

The law of conservation of mass or energy existed in literature since 18th century (or may be even before informally) the French chemist Antoine Lavoisier (1743-1794) was the first to formulate such a law in chemical reactions. The very first idea of mass-energy interconversion was given by Fritz Hasenohrl [1] that the kinetic energy of cavity increases when it is filled with the radiation, in such a way that the mass of system appears to increase before Einstein’s pioneering work [2]. Then Einstein [2] calculated relativistic form of Kinetic Energy $[KE_{\text{rel}} = (m_r - m_o)c^2]$ in June 1905. From this equation at later stage Einstein [3] derived result $E_o = m_o c^2$, where E_o is Rest Mass Energy, m_o is rest mass and c is velocity of light. Einstein also quoted the same method of derivation of Rest Mass Energy in his other works [4], whereas in some other cases he completely ignored it [5]. Many other celebrated authors quote the derivation in the exactly similar and simplified way [6,7]. Einstein [8] derived or speculated relationship between mass annihilated (Δm) and energy created (ΔE) i.e. $\Delta E = \Delta mc^2$, in his paper widely known as September 1905. For first time the salient mathematical limitations and contradictions of this derivation have been pointed out and alternate equation $\Delta E = Ac^2 \Delta M$ has been proposed by author. This method [8] is critically discussed below for understanding then its possible inconsistencies and alternate equation ($\Delta E = Ac^2 \Delta M$) are pointed out for first time.

(i) Einstein [8] perceived that let there be a luminous body at rest in co-ordinate system (x, y, z) whose energy relative to this system is E_o. The system (ξ, η, ζ) is in uniform parallel translation w.r.t. system (x, y, z); and origin of which moves along x-axis with velocity v. Let energy of body be H_o relative to the system (ξ, η, ζ). Let a system of plane light waves have energy ℓ relative to system (x, y, z), the ray direction makes angle φ with x-axis of the system. The quantity of light measured in system $[\xi, \eta, \zeta]$ has the energy [2].

$$\ell^* = \ell \{1 - v/c \cos \varphi \} / \sqrt{1 - v^2/c^2}$$

$$\ell^* = \ell \beta \{1 - v/c \cos \varphi \}$$ (1)

where $\beta = 1 / \sqrt{1 - v^2/c^2}$
The Eq.(1) was proposed by Einstein [2] in Section (8), as an analogous assumption without specific derivation and critical analysis.

(ii) Let this body emits plane waves of light of energy 0.5L (measured relative to x, y, z) in a direction forming an angle \(\phi \) with x-axis. And at the same time an equal amount of light energy (0.5L) is emitted in opposite direction (\(\phi + 180^\circ \)).

(iii) The status of body before and after emission of light energy. According to the Einstein’s original remarks ……..

\(\textit{Meanwhile the body remains at rest with respect to system (}x,y,z)\). So luminous body is not displaced from its position after emission of light energy.

If \(E_1 \) and \(H_1 \) denote energy of body after emission of light, measured relative to system (x, y, z) and system (\(\xi, \eta, \zeta \)) respectively. Using Eq. (1) we can write (equating initial and final energies in two systems)

Energy of body in system (x,y,z)
\[
E_o = E_1 + 0.5L + 0.5L = E_1 + L
\] (2)

Or Energy of body w.r.t system (x,y,z) before emission = Energy of body w.r.t system (x,y,z) after emission + energy emitted (L).

\[
H_o = H_1 + 0.5 \beta L \{ (1 – v/c \cos \phi) + (1 + v/c \cos \phi) \}
\] (3)

Energy of body in system (\(\xi, \eta, \zeta \))
\[
H_o = H_1 + \beta L
\] (4)

Or Energy of body w.r.t system (\(\xi, \eta, \zeta \)) before emission = Energy of body w.r.t system (\(\xi, \eta, \zeta \)) after emission + energy emitted (\(\beta L \)).

Subtracting Eq. (2) from Eq.(4)
\[
(H_o - E_o) - (H_1 - E_1) = L [\beta - 1]
\] (5)

Or \{ Energy of body in moving system (\(\xi, \eta, \zeta \)) – Energy of body in system (x,y,z) \} before emission – \{Energy of body in moving system(\(\xi, \eta, \zeta \))–Energy of body in system (x,y,z) \} after emission \}
\[= L [\beta - 1]
\] (5)

Einstein neither used nor mentioned in calculation or description the relativistic variation of mass which is given by
\[
m_r = \beta m_o = m_o / \sqrt{1 - v^2 / c^2}
\] (6)

where is relativistic mass (\(m_r \)) and \(m_o \) is rest mass of the body excluding the possibility that velocity \(v \) is in relativistic region. This equation existed before Einstein and was initially justified by Kauffmann [9] and more comprehensively by Bucherer [10]

(iii) Further Einstein [8] assumed the following relations (and tried to justify them at later stage).

\[
H_o - E_o = K_o + C
\] (7)

\[
H_1 - E_1 = K_1 + C
\] (8)
where \(K \) is kinetic energy of body, \(C \) is additive constant which depends upon the choice of the arbitrary additive constants in the energies \(H \) and \(E \). Thus Eq. (5) becomes
\[
K_0 - K = L \left\{ \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} - 1 \right\}
\]
(9)
Thus mass of body decreases when light energy is emitted. The body may also emit one, two, three or many waves of different magnitudes of light energy (0.499L and 0.501L or L etc.) at different angles (different values of \(\phi \)) and the velocity \(v \) may be non-uniform also. The derivation, should be free of limitations and inconsistencies and should lead to same result \(\Delta m = \frac{L}{c^2} \) even under diverse conditions as law of conservation of mass and energy holds good in all cases. These aspects are neither addressed by Einstein nor other scientists at all, and an attempt is made to do so.

1.1 Detailed discussion on some aspects of Einstein’s derivation.
Einstein’s derivation of \(\Delta m = \frac{L}{c^2} \) and its generalisation is in form of brief and compact discussion or note [8], which contains no sections or sub-sections and equations are also unnumbered. Some significant deductions and conclusions are given by Einstein in straight way without explanation.

1.1.1 Einstein used classical conditions of velocity:
If Einstein’s remarks in original paper [8] after the stage he derived Eq.(9) are quoted then above aspect (i.e. velocity is in classical region) is crystal clear. Purposely Einstein’s original text is being quoted below in two parts in italics.

(i) The kinetic energy of body diminishes as result of the emission of light
\(\text{As KE of body is } m_0 v^2/2, \text{ it implies decrease in mass of body as it is moving with constant velocity, } v \)

(ii) and amount of diminution is independent of properties of body
The amount of diminution in KE is \((\text{diminution in mass}) v^2/2 \), Einstein regarded velocity \(v \) as constant in the derivation. Thus magnitude of diminution in mass is dependent on original mass, if the mass does not change the diminution in KE remains the same. The mass remains unchanged if velocity is in classical region. Thus if velocity of body is in classical region, then amount of variation of mass of body is independent of velocity of body (property of body). But it is not so if velocity \(v \), is in relativistic region then mass increases as given by Eq.(6), which is neither taken in account nor
mentioned at all. Hence Einstein has assumed velocity is in classical region. So mass, diminution in mass and hence kinetic energy are independent of velocity of body (property of body) which is constant in classical region. Further to support this fact Einstein has used Binomial Theorem (v<<c) by quoting [8].

Neglecting magnitudes of fourth and higher orders we may place.

In Eq.(9) the magnitudes of fourth and higher orders (v^4/c^4, v^6/c^6, ...v^n/c^n) occur on application of Binomial Theorem (v<<c), these are neglected. And only magnitude of second order (v^2/c^2) are retained in calculations. In view of it Einstein solved Eq.(9) as

KE of body before emission –KE of body after emission = K_o – K = L

Without giving any further mathematical explanation Einstein [8] conclude that 'If a body emits energy L in form of radiations, its mass decreases by L/c^2.'

Following is the obvious mathematical step but not mentioned by Einstein in brief note or paper [8], as he has given final result in straight way as in Eq.(10) i.e. ∆m = L/c^2. Using Binomial Theorem Eq.(9) is written as Eq.(11), which can be further written as

Mass of body before emission (M_b) – Mass of body after emission (M_a) = L/c^2

Or ∆m = L/c^2 (10)

M_a (mass of body after emission) = M_b (mass of body before emission) – L/c^2

Here L is energy emitted by luminous body i.e. equal to difference between magnitude of final energy (L_final) and initial energy (L_initial) thus Eq.(10) in more transparent way can be written as

M_b–M_a = (L_final – L_initial)/c^2 (10)

If L_initial is regarded as zero, then light energy emitted (∆L) equals L_final, L (say).

Thus it implies that when body emits light energy then its mass decreases i.e. the mass is annihilated into the light energy. Thus the law of conservation of light energy emitted and mass annihilated is established. Then Einstein speculated that the conservation law not only exists between light energy emitted and mass annihilated but also between all energies and masses, without scientific justification or logical embellishment as a postulate. This aspect is discussed separately.

1.12 Eq.(10) can also be obtained if single wave of light energy L, is emitted.
This case has neither been discussed by Einstein nor others. Consider a body is placed in the system \((x,y,z)\) and emits a single wave of light energy \(L\), which is perpendicular to ray direction \((\varphi = 90^\circ)\). And it is observed in system \((\xi, \eta, \zeta)\) moving with uniform relative velocity \(v\), exactly in the similar way as in Einstein’s derivation. In that case Eq.(3) can be written as
\[
H_o = H_1 + \beta L (1 - v/c \cos 90^\circ)
\]
\[
H_o = H_1 + \beta L \tag{4}
\]
Also, we have
\[
E_o = E_1 + L \tag{2}
\]
Now proceeding as in Eq.(5) to Eq.(10) we get
\[
\Delta m = L/c^2 \tag{10}
\]
\[
M_a \quad (\text{mass of body after emission}) = - L/c^2 + M_b \quad (\text{mass of body before emission})
\]
which is the same result as obtained by Einstein.

1.13 Einstein’s condition: Body remains at rest before and after emission of light energy

Momentum of body before emission is equal to momentum after emission.

Einstein has not even mentioned term conservation of momentum in his derivation at all. However according to the Einstein’s original remarks (after describing emission of light energy by luminous body)……..

Meanwhile the body remains at rest with respect to system \((x, y, z)\).

Einstein’s this condition is satisfied in numerous cases when luminous body emits energy and remains at rest. The body remains at rest before and after emitting the light energy \(L\) as recoil is vanishing small or zero, hence initial momentum of luminous body is equal to the final momentum. The extent of recoil also depends upon the resistive forces (frictional, gravitational, atmospheric etc.) present in the system. The body may remain at rest after emitting one, two or more waves simultaneously having energy different than \(0.5L\). In such cases initial and final momenta of the luminous body are equal as the net change after emitting energy is negligibly small. Thus body remains at rest as requisite of Einstein’s constraint.

Further in description of light emitting body its mass is regarded as in classical region. For example, Einstein has perceived that body (not particle or wave) remains at rest before and after emitting energy. If a wave or particle emits light energy then it will not remain at rest as per Einstein’s condition. Thus mass may be of the order of \(10\) gm or less (such that body remains at rest after emitting light energy as mentioned by Einstein) or more (body may be heavier than \(100\)kg unreservedly). The law of conservation of energy holds good for all bodies, particle or waves; thus the derivation must be in general and applicable to all cases.

The conservation of momentum, which is not at all mentioned by Einstein, holds good when body emits light energy. For example, if a light wave is emitted in visible region \((f = 4 \times 10^{14} \text{ Hz})\)
has energy \((hf) = 2.6 \times 10^{-19} \text{J}\), a wave with this energy is unable to cause any observable recoil (however it tends to do so) in a body of mass in classical region as used or intended by Einstein. As already mentioned the recoil also depends upon resistive forces present in the system. The law of conservation of momentum is obeyed in this case, as in previous case which has been considered by Einstein [8] to derive Eq.(10). The body remains at rest before and after emitting energy which is Einstein’s main condition in above derivation.

Analogously, consider a man fires a bullet from his gun and as bullet moves forward man recoils observably, and law of conservation of momentum is obeyed (forward momentum of bullet equals backward momentum of man). However exact velocity of recoil also depends upon resistive forces (frictional, atmospheric and gravitational forces) present in the system. Then the man fires a shot from the toy gun, and this shot is unable to cause any observable recoil (however system tends to recoil). The initial momentum remains equal to final momentum. The law of conservation of momentum (in one wave or two waves or more) equally holds good in these cases; the energy of waves is unable to recoil body observably. In this case the initial momentum and final momentum (after emitting light waves) of luminous body are also equal as change in momentum is vanishing small.

The non-displacement of body from original position during and after the emission of light energy, which may be regarded as the simplest or special case. However the law of conservation of mass-energy (which is ultimate result) holds good in all cases when velocity of body may be zero, uniform or non-uniform (motion may be accelerated or non-accelerated) w.r.t. system \((x,y,z)\) and system \((\xi, \eta, \zeta)\). As already mentioned the body also remains at rest if light energy emitted by luminous body in one, two or more waves at different angles having different magnitudes of energy. Thus Einstein has discussed the simplest case.

1.2 Einstein did not compare relativistic kinetic energy of slowly accelerated electron i.e. \(K_f - K_i = W = m_o c^2 \sqrt{1/(1-V^2/c^2) - 1} = m_o c^2 - m_o c^2\) and kinetic energy from light energy mass equation \(K_o - K = L \sqrt{1/(1-V^2/c^2) - 1}\)

According to Work-Energy Theorem, work done is equal to change in kinetic energy.

Work done \((W)\) = Final Kinetic Energy \((K_f)\) – Initial Kinetic Energy \((K_i)\)

If body is moving with uniform velocity \((a=0)\), then initial KE is equal to the final KE, thus \(W\) is zero; also in this case acceleration is zero thus force \((F=ma)\) and work done \((W=FS=0)\). Then Einstein gave a result in straight way in the paper he introduced the Special Theory of Relativity [2] as

\[K_f - K_i = W = m_o c^2 \sqrt{1/(1-V^2/c^2) - 1} = m_o c^2 - m_o c^2\] \(12\)

where \(V\) is variable velocity (slowly accelerated motion) and other terms are defined earlier.

Further in Eq.(9) \(L\) is \(\Delta L\) i.e. difference in initial and final energy.

Einstein’s original remarks (after indirectly justifying that velocity \(v\) is in classical region)

Moreover, the difference \(K_o - K\), like the kinetic energy of the electron depends upon the velocity.
These may be regarded as just passing remarks as right hand sides of both the equations depend upon velocity (v, constant and V, variable). In his original thesis [8] Einstein correctly did not equate or mathematically compare both the equations i.e. Eq.(9) and Eq.(12) due to following reasons.

(i) The equations from different derivations can not be compared or equated unless they have same mathematical and conceptual nature or basis and they discuss the identical scientific aspects. The equations from different derivations cannot be mathematically equated just for the reason they have same dimensions. The energy have different forms e.g. heat energy, light energy, sound energy, electrical energy, kinetic energy etc, but have same dimensions. The dimensions of torque and work or energy are the same i.e. ML^2T^-2, for this reason both cannot be equated. Mathematically, Torque = rFsinθ, a vector quantity and Work = FSsinθ, a scalar quantity; thus in one case θ is angle between F and r (position vector) and in second case θ is angle between F and S (displacement). Hence when angle θ is 0° then Torque is zero but work done is maximum; and when θ = 90°, Torque is maximum and work done is zero Thus even if two physical quantities have same dimensions, they may represent two different aspects , hence cannot be equated .

(ii) Different ways to measure change in the Kinetic energy in Eq.(9) and Eq.(12)

(a) In Eq.(9),
Change in Kinetic Energy =
Initial kinetic energy (before emission of light energy) – Final kinetic energy (after emission of light energy)

(b) In Eq.(12), according to Work Energy Theorem,
Change in Kinetic Energy =
Final Kinetic energy (after increase in mass) – Initial Kinetic Energy (original mass)

Thus expression for change in KE both the equations i.e. Eq.(9) and Eq.(12) is different.

(iii) Decrease or increase in mass:

(a) In Eq.(9) due to emission of light energy, the final mass of the body DECREASES , the decrease in mass is converted into energy. Thus final mass of the body is less than the original mass.

(b) In Eq.(12) when external force acts on the body and velocity is in relativistic region, the mass of body INCREASES and is known as relativistic mass

\[m_r = m_0 \sqrt{1-V^2/c^2} \]

(6)
The energy which is externally supplied to accelerate the body is converted into mass. Thus Hence in Eq.(12) the mass of the body INCREASES and in Eq.(9) mass of body DECREASES.

(iv) Constant and variable velocity.

(a) In Eq.(9) the velocity v with which system (ξ, η, ζ) moves with respect to system (x,y,z) is constant (thus motion is non-accelerated).

(b) Whereas in Eq.(12), as quoted by Einstein [2] himself represents motion of slowly accelerated electron, thus velocity V is variable.
Hence in Eq.(12) velocity is variable i.e. motion is ACCELERATED, and in Eq.(9) velocity is constant, motion is UN-ACCELERATED.

(v) Velocity in classical region and relativistic region.

(a) In Eq.(9) and subsequent equations, Einstein has done mathematical treatment under classical conditions. For example, Einstein has mentioned that KE of body decreases (hence mass decreases as velocity v is constant) and relativistic increase in mass with velocity is not taken in account at all, thus velocity is in classical region. Had velocity been in relativistic region, then increase in mass would have been taken in account as in Eq.(6). Thus velocity is in classical region.

(b) In Eq.(12), the relativistic KE of slowly accelerated electron has been calculated using Eq.(6)

\[m_r = \frac{m_0}{\sqrt{1-V^2/c^2}} \] \hspace{1cm} (6)

which clearly implies velocity V is in relativistic region. In case v =0 or v is negligible compared to c, then mr =m0. If the velocity is in classical region then Eq.(12), is simply 1/2m0V^2, which implies no change in mass. Hence in Eq.(12) velocity V, is in relativistic region (V~c) whereas in Eq.(9) the velocity v is in classical region (v<<c)

(vi) In Eq.(9) energy is emitted to surroundings and in Eq.(12) energy taken from surroundings

(a) In Eq.(9) and subsequent equations it is implied that mass of body DECREASES and energy is emitted to surroundings as light energy.

(b) In Eq.(12) when mass is slowly accelerated to the relativistic region (V becomes comparable to c), then mass of body INCREASES. The increase mass is due to energy taken from the surroundings.

Hence in Eq.(12) energy is ABSORBED by body from the surroundings, and in Eq.(9) energy is EMITTED by body to surroundings.

Thus Eq.(9) and Eq.(12) are based upon the entirely diverse and conflicting concepts, and hence cannot be mathematically compared simply due to reasons that dimensions are the same.

1.21 Justification of transformation from Eq.(5,7-8) to Eq.(9)

Einstein [8] correctly did not draw any direct conclusion from these equations i.e. Eq.(9) and Eq.(12) simultaneously or equated these two equations. Einstein simply on the basis of the fact that right hand sides of Eq.(9) and Eq.(12) depend upon velocity (nature of both equations is entirely different), tried to justify two aspects. Firstly, the transformation of Eq. (5,7-8) to Eq.(9) is logical, which means justification of introduction of arbitrary additive constant C. Secondly, assumption that arbitrary additive constant C does not change during emission of light.

1.3 Infinitesimally small variations in parameters (φ and L) cause drastic changes in characteristics and concepts; these are not discussed by Einstein.

1.31 One Wave is emitted

If angle formed by single wave is 89° or 91° not 90°.
(i) When $\phi = 89^\circ$:
Consider a body is placed in the system (x,y,z) and emit a single wave of light energy L, making angle 89° with direction of propagation, and it is observed in system (ξ, η, ζ) which is moving with uniform relative velocity v. Then

$$H_o = H_1 + \beta L (1 - v/c \cos 89^\circ)$$

Now proceeding as in Eq.(5) to Eq.(10) we get

$$\Delta m = -0.03490L/cv + L/c^2$$

M_a (mass of body after emission) = $0.03490L/cv - L/c^2 + M_b$ (mass of body before emission)

which implies mass of body increases when light energy is emitted. In RHS term $(-0.03490 L/cv + L/c^2)$ is always negative as velocity v is in classical region. The % age difference between Eq.(10) and Eq.(13) is $3.49c/v$ or 1.047×10^8 if the v is $10m/s$ (in classical region).

(ii) When $\phi = 91^\circ$:
Similarly, if the angle made is 91° {cos91° = – 0.0174524} with direction of propagation then

$$\Delta m = +0.03490L/cv + L/c^2$$

$M_a = -0.03490L/cv - L/c^2 + M_b$

which implies that mass of body decreases when light energy is emitted. But this decrease in mass is much more than Eq.(10). The magnitude of percentage difference between Eq.(10) and Eq.(14) is $3.49c/v$ or 1.047×10^8 if the v is $10m/s$ (in classical region).

If the angles are considered in the derivation 90°, 89° and 91°, then results are all together different. It implies that angle at which light energy is emitted, is significant factor in Einstein’s derivation. The law of conservation of mass-energy should not depend upon angle like this.

1.32 Two waves are emitted.

(i) When magnitude of energy emitted is slightly different than 0.5L.

In case it is assumed that this body emits plane waves of light of energy 0.4999L along x-axis i.e $\phi = 0^\circ$. The other wave of light energy 0.5001L is emitted in exactly opposite direction i.e. forming angle 180° [Einstein has assumed light energy 0.5L in both the cases] then equation equivalent to Eq.(3) becomes

$$H_o = H_1 + 0.501 \beta L (1 - v/c \cos 0^\circ) + 0.499 \beta L (1 - v/c \cos 180^\circ)$$

After proceeding in similar way as above we get

$$K_o - K = -0.002 v/c + Lv^2/2c^2$$

Or

$$\Delta m = Mass \ of \ body \ before \ emission \ (M_b) - Mass \ of \ body \ after \ emission \ (M_a)$$

$$= -0.004L/cv + L/c^2$$

or

$$M_a = 0.004L/cv - L/c^2 + M_b$$

which implies that when Light Energy, $L \text{ (0.499L along x-axis, 0.501L in opposite direction)}$ is emitted, then mass of luminous body increases ($v<<c$); so $0.004L/cv$ is always more than L/c^2. It is
contrary to Einstein’s deduction i.e. Eq.(10). The %age difference between Eq.(10) and Eq.(16) is 0.4c/v or 1.2 x10^7 if velocity is 10m/s i.e. in classical region.

(ii) When magnitude of angle at which one wave is emitted is 181° rather than 180° (as considered by Einstein) and other at 0°.

\[
H_o = H_1 + 0.5 \beta L (1 - v/c \cos 0°) + 0.5 \beta L (1- v/c \cos 181°)
\]

\[
K_o - K = -0.00007615 L v/c + L v^2/c^2
\]

\[
\Delta m = -0.0001523 L v/c + L/c^2
\]

or \[
M_a = 0.0001523 L v/c - L/c^2 + M_b
\]

which implies mass of body increases when light energy is emitted, as in classical region (10m/s) is more than \(L/c^2 \). If angle \(\varphi = 181° \), thus difference in 1° of angle caused drastic changes in results. Earlier Einstein has considered if angle \(\varphi \) is 180° then mass of body decreases on emission. If the angles are considered in the derivation 90°, 89° and 91°, then results are all together different. It implies that angle is significant factor in Einstein’s derivation. The law of conservation of mass-energy should not depend upon angle like this.

2.0 Some feasible cases neglected by Einstein and contradictions of the derivation.

The only condition put by Einstein on luminous body is that the body must remain at rest before and after emission of light energy. This condition is satisfied in numerous cases and hence Einstein’s derivation is applicable. Einstein has discussed the simplest or typically special case when two light waves (of equal energy, 0.5L) are emitted in opposite directions; which is just one from numerous possible cases. But the following genuine possibilities (which are absolutely essential) have neither been discussed by Einstein and nor by others.

(i) Many waves or single wave.

The sources of light may emit many light waves simultaneously or just a single wave; then angle \(\varphi \) and magnitude of light energy (L) may be different. Einstein has discussed the simplest and special case when two waves are emitted. Realistically it is a particular case and body may emit a single or many waves depending upon its characteristics and remain at rest. The bodies can be fabricated to have wide range of parameters to check all aspects of the derivation.

(ii) Angle at which light waves are emitted.

Einstein considered just two angles \(\varphi \) & \(\varphi + 180° \) at which light waves are emitted. The body remains at rest if it emits light energy at numerous angles. This is Einstein’s only condition regarding this i.e. body remains at rest before and after emission. In general luminous body can emit light waves at various angles. Even slight variations in angle(s) cause very significant change in concepts as discussed in Eqs (10, 14, 16, 18). But this aspect has not been taken in account by Einstein.

(iii) Magnitude of light waves.

In the derivation Einstein has considered that total light energy emitted by luminous body is L, and
emitted in two waves each having energy 0.5L, moving in opposite directions. It can be 0.499L and 0.501L or different. Further luminous body can emit large number of waves, then light energy L will be distributed among the waves equally or unequally and body remains at rest. If energy emitted is different from 0.5L then results are different from \(\Delta m = L/c^2 \) as in Eqs.(21,24,26)

vi) Velocity \(v \) may be non-uniform.

Einstein considered systems which are in uniform relative motion, \(v \) w.r.t. each other. The velocity of system may be uniform or non-uniform may be in classical or relativistic region or at rest the law of conservation of mass and energy holds good under all circumstances. Thus the derivation should have been applicable for all values of velocities.

(v) Application of Binomial Theorem. Further this derivation is stage sensitive as \(\Delta m = L/c^2 \) is only obtained if Binomial Theorem is applied at particular stage i.e. Eq.(9). The same is also applicable to Eq.(1) at much earlier stage, if applied here then we get contradictory results i.e. \(\Delta m (M_b-M_a) = 0 \) instead of \(\Delta m = L/c^2 \), as shown in Eq.(29) Thus in this derivation it is application of Binomial Theorem which makes or mars the law of conservation of energy, hence the derivation is inconsistent. However in derivation of relativistic form of kinetic energy \([KE_{rel} = (m_r-m_0)c^2] \), Binomial Theorem may be applied at any stage, but the result is same i.e classical form of kinetic energy \((m_r\nu^2/2) \).

(vi) Nature and limitations of Eq.(1) The central equation in derivation is Eq.(1) which gives variation of light energy with velocity, this equation has been quoted (but without mathematical details) by Einstein in paper in which he gave Special Theory of Relativity [2] in Section 8. The nature of this equation is different from equation which existed before Einstein’s work e.g. relativistic variation of mass \([m_r = m_0/(1-v^2/c^2)^{1/2}] \), length contraction \([L = L_0 (1-v^2/c^2)^{1/2}] \) and time dilation \([T = T_0 (1-v^2/c^2)^{1/2}] \). This equation has also serious mathematical limitations. All the above aspects are described below along with impacts and consequences.

2.1 Violation of law of conservation of mass and energy i.e. mass and energy are created out of nothing simultaneously.

This case can be discussed considering the cases when luminous body emits one or more (even or odd) waves.

Four waves are emitted.

Consider the case when four waves at angles \(\phi & \phi +180^\circ, \Theta & \Theta +180^\circ; \) having magnitude of light energy 0.255 L and 0.245L. The angles at which four waves are emitted are 0° & 180° and 75° & 255° (75+180°), in view of this Eq.(3) can be written as

\[
H_0 = H_1 + 0.255L\beta[1-v/c \cos 0^\circ] + 0.245L\beta[1-v/c \cos 180^\circ] + 0.255L\beta[1-v/c \cos 75^\circ] + 0.245L\beta[1-v/c \cos 255^\circ]
\]

or

\[
H_0 = H_1 + L\beta [1-0.012588v/c]
\]

Using Eq.(2) and Eq.(19), we get as in previous cases,
\[K_a - K = L \left[-0.012588 \frac{v}{c} + \frac{v^2}{2c^2} \right] \]
(20)

\[\Delta m (M_b - M_a) = -0.025176 \frac{L}{cv} + L/c^2 \]
(21)

Or \(M_a \) (mass after emission) = \(0.025176 \frac{L}{cv} - L/c^2 + M_b \) (mass before emission)
(22)

The above equation is derived with application of Binomial Theorem \((v<<c)\); under this condition \(\Delta m \) from Eq. (21) is always negative. The %age difference between Eq.(10) and Eq.(21) is \(3.7764 \times 10^7 \) (if \(v \) is \(10m/s \)). Hence from Eq.(22) following two conclusions are absolutely clear,

(a) Body is emitting light energy, \(L \) (say, very stocky amount of energy) continuously.
(b) Simultaneously as light energy \(L \) is emitted, the mass of body (matter) also increasing.

Conclusions

From this interpretation following two conclusions are clear

(i) The increase in mass of body when body emits light energy \(L \).

Einstein’s 1905 derivation also predicts that luminous body emits energy and simultaneously mass of body increases. Both the creation of energy and mass is at cost of nothing or cipher. It is clear contradiction of law of conservation of mass and energy.

(ii) Contradiction with relativistic variation of mass.

According to relativistic variation of mass i.e. Eq.(6) i.e \(m = \beta m_0 \), mass increases when velocity of body is comparable with speed of light, this aspect was also used by Einstein from existing literature in the paper he introduced the Theory of Relativity [2]. This result is being contradicted by Einstein himself. This derivation implies that mass of body can also increase if it moves with classical velocity \((v<<c)\) and surprisingly emits light energy (which Einstein established is form of mass).

Thus this derivation also contradicts the relativistic variation of mass with velocity.

Five waves are emitted.

If five waves are emitted such that each wave makes angles 0°, 90°, 145°, 300° and 340° with the x-axis and each wave carries energy equal to 0.2\(L \). Then equation equivalent to Eq.(3) be written as

\[H_0 = H_1 + 0.2L[1-\beta \cos0°] + 0.2L[1-\beta \cos90°] + 0.2L[1-\beta \cos145°] + 0.2L[1-\beta \cos300°] + 0.2L[1-\beta \cos340°] \]
(23)

\[H_o = H_1 + 0.2L[5 - 0.620543 v/c] \]
(23)

Using Eq.(2) and Eq.(23), we get as in previous cases.

or \(K_o - K = L \left[\beta (1-0.1241081 \frac{v}{c}) -1 \right] \)

\[\Delta m = -0.2482 \frac{L}{cv} + L/c^2 \]
(24)

\[M_b = 0.2482 \frac{L}{cv} - L/c^2 + M_b \]

mass of body increases which is contradictory, as discussed earlier in case of Eq.(13) and others.

Six waves are emitted

Consider the case when six waves are emitted by the luminous body making angles 0°, 180°, 75°, 255°, 60° and 69°; the magnitudes of light energy emitted along these directions are 0.25\(L \), 0.24\(L \),
0.25L, 0.24L, 0.01L and 0.01L respectively. In view of this Eq.(3) can be written as
\[H_o = H_1 + 0.25 L\beta (1-v/c \cos 0^\circ) + 0.24 L\beta (1-v/c \cos 180^\circ) + 0.25 L\beta (1-v/c \cos 75^\circ) + 0.24 L\beta (1-v/c \cos 225^\circ) + 0.01 L\beta (1-v/c \cos 60^\circ) + 0.01 L\beta (1-v/c \cos 69^\circ) \]
(25)
Substituting various values and rearranging terms,
\[H_o = H_1 + L\beta (1-0.02117v/c) \]
In terms of change in mass as calculated in Eq.(24) and other equations
\[\Delta m = -0.04234 L/cv + L/c^2 \]
\[M_a = 0.04234 L/cv - L/c^2 + M_b \]
(26)
Hence the similar contradictory result, as discussed in case of Eq.(24) or Eq.(13) and others
Like wise results can be discussed if luminous body emits many waves.

2.2 Violation of law of conservation of mass-energy i.e. energy is created out of nothing, in Einstein’s derivation

(i) As already mentioned v is the velocity with which co-ordinate system (ξ, η, ζ) moves w.r.t system (x, y, z). If velocity v is regarded as zero (v = 0) i.e. system (ξ, η, ζ) is at rest and body emits light energy, L as before. Under this condition Eq.(1) becomes
\[t^* = t \]
(27)
Re-writing Eq.(3) in view of above we get
\[H_o = H_1 + 0.5L + 0.5L = H_1 + L \]
(28)
From Eq. (28) and Eq. (2),
\[(H_o - E_o) - (H_1 - E_1) = 0 \]
Now proceeding in the similar way as earlier, we get
or
\[K_o - K = 0 \]
\[\Delta m (M_b - M_a) = 0 \]
(29)
Or Mass of body before emission (M_b) = Mass of body after emission (M_a)
Thus when system (ξ, η, ζ) is at rest and luminous body emits energy (say, stocky amount), then its mass remains constant i.e. energy is being emitted out of nothing, the law of conservation of mass and energy is clearly contradicted in Einstein’s derivation. In all nuclear reactions, chemical reactions etc., mass is converted into energy, energy is obtained at the cost of mass. But here derivation predicts energy L (say stocky amount of energy) is created without loss of mass at all as in Eq.(29) mass remains the same, which is inconsistent results in all respects.

2.3 Contradiction of \(\Delta m = L/c^2 \) itself i.e. energy emitted is more than \(L = \Delta m c^2 \)
(i) Similarly consider that source emits light energy L in single wave such that it makes angle 180° with x-axis,
$$H_o = H_1 + \beta L (1+v/c)$$ \hspace{1cm} (30)
Now proceeding in the similar way as earlier, we get
$$K_o - K = \beta L [1+v/c] - L$$
or $$\Delta m = 2L/cv + L/c^2$$ \hspace{1cm} (31)
If the value of v is 10m/s, then Eq. (31) becomes
$$\Delta m (M_b - M_a) = 2L / 3 \times 10^9 + L / 9 \times 10^{16}$$ \hspace{1cm} (32)
$$M_a = -2L / 3 \times 10^9 - L / 9 \times 10^{16} + M_b$$
Also in this case Eq. (10) becomes,
$$\Delta m (M_b - M_a) = L / 9\times10^{16}$$
or $$M_a = - L / 9\times10^{16} + M_b$$ \hspace{1cm} (33)
The magnitude of Eq.(32) is much higher than that of Eq.(10). Now the percentage difference between Eq.(32), and Einstein’s original equation i.e. Eq.(10) is $200v/c$ or 6×10^9 (if $v = 10$m/s). Thus results given by this derivation are self contradictory. Many such examples can be quoted in this regard.

3.0 If Binomial Theorem is applied to Eq. (9) the law of conservation of matter and energy is originated and if the Binomial Theorem is applied to Eq. (1) then the law is contradicted.

(i) If Binomial Theorem is applied at Eq. (9) as in case of Einstein’s derivation, then as already mentioned the result is
$$\Delta m = L/c^2$$ \hspace{1cm} (10)
(ii) When Binomial Theorem is applied at Eq. (1) i.e. $v<<c$
$$\ell = \beta \ell (1 - v/c \cos \phi) = \ell$$ \hspace{1cm} (27)
Thus, the subsequent equations can be written as
$$E_o = E_1 + L$$ \hspace{1cm} (2)
$$H_o = H_1 + L$$ \hspace{1cm} (4)
$$(H_o - E_o) - (H_1 - E_1) = 0$$
$$K_o - K = 0$$ or $$\Delta m = 0$$
Mass of body before emission (M_b) = Mass of body after emission (M_a) \hspace{1cm} (29)
The Eq. (29) implies that body emits light energy, then its mass remains the same, it is contrary to Eq. (10) given by Einstein which implies that when light energy is emitted then mass of body decreases. Thus this derivation has a limitation as the stage at which Binomial Theorem is applied makes or mars law of conservation of mass and energy. However, the law of conservation of mass-energy holds good under all conditions and must not depend upon the stage at which Binomial Theorem (a mathematical tool) is applied. In addition the results from this derivation are affected by other factors as well.

3.1 The velocity constraints on Einstein’s Light Energy Mass Equivalence ($\Delta m = \Delta L/c^2$)
From above discussion it is evident that Einstein’s this derivation has over dependence on velocity. It only holds good if velocity is in classical region, gives contradictory results if body is at rest (v = 0) and is not applicable if v is in relativistic region or v → c.

(i) When velocity is in classical region (v << c) then Binomial Theorem is applicable to Eq.(9)

\[K_o - K = L \left\{ \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} - 1 \right\} \]

Or \[\Delta m = \frac{L}{c^2} \] (10)

or \[M_a (mass \ of \ body \ after \ emission) = M_b (mass \ of \ body \ before \ emission) - \frac{L}{c^2} \]

Thus mass of body decreases when light energy is emitted.

(ii) When body is at rest, v = 0

or \[K_o - K = 0 \]

\[\Delta m (M_b - M_a) = 0 \]

Or Mass of body before emission (M_b) = Mass of body after emission (M_a) (29)

Thus when system (\(\xi, \eta, \zeta\)) is at rest and luminous body emits energy (say, stocky amount), then its mass remains constant i.e. energy is being emitted out of nothing, the law of conservation of mass and energy is clearly contradicted in Einstein’s derivation of \(\Delta m = \Delta \frac{L}{c^2}\).

(iii) When velocity is in relativistic region or v = c

Under this condition there is relativistic variation of mass of body and Eq.(6) is applicable. This factor is not at all taken in account, in the mathematical and conceptual treatment. Hence Einstein’s Light Energy Mass equation is not applicable in this case.

Thus there are constraints due to velocity, angle and magnitude of light energy on the derivation. In fact law of conservation of mass and energy is a basic law, and should not have constraints like this.

3.3 Comparison of Einstein’s Light Energy mass equation and Relativistic form of KE

Using relativistic variation of mass

\[m_r = \beta m_o = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}} \] (6)

Einstein obtained relativistic form of KE

\[dK = Fdx \quad or (KE)_{rel} = \left(m_r - m_o \right)c^2 \] (12)

(i) If Binomial Theorem is applied to Eq.(12) then

\[(KE)_{rel} \quad when \ v << c = (KE)_{classical} = \frac{m_o v^2}{2} \] (34)

which is usual form of KE as obtained by other methods. In equation KE = \(m_o v^2/2\), \(m_o\) is rest mass.

It cannot be interpreted as that \(m_o\) decreases then KE increases.

(ii) If Binomial Theorem is applied at Eq.(6) then

\[m = m_o \]

or \[dK = Fdx = \frac{dp}{dt} \ dx \quad or \ K = \frac{m_o v^2}{2} \] (34)

Thus we apply the Binomial Theorem at Eq.(6) or Eq.(12), we get the same equation for kinetic energy, \(m_o v^2/2\) i.e. Eq.(34).
Analogously if Binomial Theorem is applied at Eq.(1) and Eq.(9), then different values of change in mass i.e. $\Delta m = 0$ or $\Delta m = L/c^2$ are obtained (in one case mass remains the same and in the second mass decreases). In fact result should have been the same as in Eq.(34); irrespective of the fact whether Binomial Theorem is applied at Eq.(1) or Eq.(9). It clearly highlights the limitations of Einstein’s derivation, which is unnoticed by scientific community.

4.0 Eq. (10) is based upon inconsistent equation

(i) Inconsistency of dimensional homogeneity when $v \to c$, by Eq.(1)

The central equation in this derivation is Eq (1) which has been quoted (but without mathematical details) by Einstein himself in Section (8) in the same paper he introduced the Special Theory of Relativity [2].

If $\varphi = 0^o$, then Eq. (1) becomes,

$$\ell^* = \ell (1 - v/c) / \sqrt{(1 - v^2/c^2)}$$

(35)

This equation is applicable when velocity v is uniform, if the velocity is non-uniform in the interval; its application requires estimations of sub-intervals when velocity is uniform for its applicability. If the system $[\xi, \eta, \zeta]$ moves with velocity equal to that of light i.e. $v = c$ which realistically means that velocity v tends to c i.e. $v \to c$. (some Quasars or other heavenly bodies may attain such high velocities). Thus,

$$\ell^* = 0/0$$

which is undefined or ℓ^* tends to $0/0$ which has the same meaning.

The dimensions of LHS are $M L^2 T^{-2}$ [energy] and that of RHS undefined. It is the inherent requirement that an equation must obey the principle of dimensional homogeneity [14-15] but it is not so in case of Eq.(1) under this particular condition. Hence under this condition the central equation which leads to $\Delta m = L/c^2$ is not applicable. Such central equation should be free from the limitations.

(ii) Non-compliance of identity $a^2 - b^2 = (a+b)(a-b)$ by Eq.(1).

Further contradictory results are also self-evident if Eq. (35) is solved and same condition ($v = c$ or $v \to c$) is applied i.e. \{1–v^2/c^2\} = \{1–v/c\} (1+v/c) is simple algebraic result.

$$\ell^* = \ell \sqrt{(1 - v/c)} / \sqrt{(1 + v/c)}$$

(35a)

Now again if the velocity v tends to c i.e. $v \to c$ above equation becomes,

$$\ell^* = 0$$

(36)

Under this condition the Eq.(35), in unsolved form is $\ell^* = 0/0$

Thus the same equation (in solved and unsolved forms) under similar conditions ($v \to c$) gives different results ($\ell^* = 0/0$ and $\ell^* = 0$), which is purely arbitrary and illogical. Thus results from Eq.(1) are contradictory to basic identity of algebra; and in addition the result is not consistent with dimensional homogeneity.

The basic principle of conservation of mass and energy should not be based upon an equation which is
full of limitations e.g. it disobeys dimensional homogeneity and basic algebraic identities. Thus Eq.(1) is relativistic in nature but its numerator varies with v, even under classical conditions. The variation in magnitude of numerator may be a factor for inconsistent results.

If angle $\phi = 180^\circ$, then $\cos 180^\circ = -1$, thus under condition when velocity tends to c ($v \to c$) or becomes equal to c then,

$$\ell^* = \infty$$

Thus entirely different results are obtained, i.e. $\ell^* = \infty$ simply if angle of wave is exactly reversed ($\phi = 180^\circ$) compared to above case (when $\phi = 0$, then $\ell^* = 0/0$ or $\ell = 0$)

Similarly Einstein [16] developed theory of Static Universe in 1917, which has limitation Einstein divided with a term which becomes zero under certain cases. This limitation was pointed out by that cosmologist. Friedmann and later on Einstein accepted the same as the biggest blunder of life, quoted by George Gamow [17]. The similar prospective situation is here also. Thus in totality, critically analysing all aspects, this derivation is obviously inconsistent and theoretically unchecked as well. As Einstein [8] did not address this aspect at all along with many others which he should have, hence Einstein’s unfinished task is completed here.

5.0 Einstein’s arbitrary generalisation of $\Delta m = L/c^2$ for all energies i.e. $\Delta m = \Delta E/c^2$

Further Einstein generalized the equation from Eq. (10) in the following way just in two sentences [8], “Here it is obviously inessential that energy taken from the body turns into radiant energy, so we are led to more general conclusion:

The mass of a body is a measure of its energy content: if the energy changes by L, the mass changes in the same sense by $L/9x10^{20}$ if the energy is measured in ergs and mass in grams.”

The meaning of first sentence dubious in regard to the discussion. In second sentence Einstein [8] speculated general equation from Eq.(10) just in analogous way as (energy emitted = mass annihilated c^2) i.e.

$$\Delta m = \Delta E/c^2 \quad \text{or} \quad (M_b - M_a) = (E_{\text{final}} - E_{\text{initial}})/c^2 \quad (37)$$

where ΔE is energy produced on annihilation of mass.

Now it is regarded as true for all types of energies (mass of a body is measure of its energy content). Does it mean that when sound energy is produced from source, then mass of body decreases? When mass is annihilated then huge amount of sound or noise may be produced which can be termed as sound bomb or noise bomb analogous to nuclear bomb. The most likelihood of the phenomena may be speculated at instant of Big Bang or in supernova explosions etc. At small scale sound energy is produced when bomb or cracker explodes. In the discussion no equation for sound energy or other forms of energy (in frames having relative motion or at rest) equivalent to Eq. (1) and Eq.(10) has been quoted, the above speculation needs its insightful theoretical justification.

In case conversion of mass to sound energy is feasible then speed of sound may be more than
332 m/s under some characteristic cases. The same arguments can be checked for speed of light if mass annihilated spontaneously in bulk in some emblematic reaction and mainly light energy is produced. Such reactions may be more feasible in heavenly bodies. In the existing literature there are prospective proposals [18-19] that speed of light can be less or more than c. The same is true for all other forms of energy, as law of conservation of mass-energy holds in all circumstances. In its generalisation from light energy-mass equations all aspects to be accounted for [11-13]. Does all form of energies obey Eq.(1) or have similar dependence as in Eq.(1)? But as already discussed in section (4.0) has inherent limitations.

About its experimental confirmation Einstein [8] quoted that ‘’It is not excluded that it will prove possible to test this theory using bodies whose energy content is variable to a high degree (e.g., radium salts) ’’ Thus at that time Einstein has in his mind the loss of weight resulting from radioactive transformations[20]. At that time heat produced on loss of mass in body in burning (chemical change) was also the most obvious example. Planck [21-22] was the first to remark that mass-energy equation bears on binding energy for a mole of water, in 1907. In 1910, Einstein himself remarked [23] ‘’for the moment there is no hope whatsoever for the experimental verification of mass–energy equivalence’’. But similar estimates for nuclear binding energy (conversion of mass to energy) were made nearly after a quarter of century when atomic and nuclear models were developed and nuclear characteristics were understood.

For this period Einstein’s mathematical derivation was not critically analysed, and after its experimental confirmation in nuclear reaction, such necessity for theoretical analysis was not felt, as is done now. In nuclear phenomena this equation \(\Delta E = \Delta mc^2 \) is regarded as standard or reference. For first time, in view of true scientific spirits Einstein’s derivation is critically analysed.

5.1 Einstein derived five equations relating to various types of masses \{ rest mass(\(m_o \)), relativistic mass (\(m_r \)) , mass annihilated (\(\Delta m \)) and mass created (\(\Delta m \)) \} and energies \{rest mass energy (\(E_o \)), relativistic energy (\(E_{rel} \)), energy annihilated or energy created, (\(\Delta E \)) \}.

The inherent characteristics of the equations derived by Einstein are discussed below, only closely related equation existed at time of Einstein was that for kinetic energy i.e. \(K = m_o v^2/2 \).

1. \(KE_{rel} = (m_r - m_o)c^2 \) (12)

 This equation is equivalent to \(K = m_o v^2/2 \), in relativistic mechanics.

2. \(E_o = m_o c^2 \) (Energy when body is at rest, \(v =0 \), \(dx = 0 \) or \(dK = Fdx =0 \)) (38)

 \(E_o \) is derived from relativistic form of kinetic energy, which is further derived from \(dK = Fdx \).

3. \(E_{rel} = KE_{rel} + m_o c^2 = m_r c^2 \) (energy when velocity of body is \(v \approx c \)) (39)

 \(E_{rel} \) is derived from Work Energy Theorem i.e.

 \[\text{Work done} = \text{change in kinetic energy} = KE_{\text{final}} - KE_{\text{initial}} \]

 and relativistic variation of mass as given by Eq.(6) i.e. \(m_r = \beta m_o \)

4. \(\Delta L = \Delta mc^2 \) (conversion of light energy to mass and vice-versa) (10)
ΔL is derived from energy considerations of emission of light energy in two systems having relative motion under classical conditions using Binomial Theorem.

(v) $\Delta E = \Delta mc^2$ (conversion of any form of energy to mass and vice-versa) \hspace{1cm} (37)

$\Delta E = \Delta mc^2$ has been speculated by Einstein from $\Delta L = \Delta mc^2$

Now the five equations were derived by Einstein are $L = \Delta m c^2$, $\Delta E = \Delta m c^2$, $KE_{rel} = (m_r - m_o)c^2$ $E_{rel} = m_r c^2$ and $E_o = m_o c^2$ appear to be similar as have same units and dimensions but conceptually are entirely different like four directions [11-13]. Even the cradle of $E_o = m_o c^2$ is questionable, in view of scientific logic.

The similar equations of energy which are useful in understanding conceptual differences of Eqs.(10,12, 37-39) are kinetic energy (KE) and potential energy (PE),

$$KE = m_o v^2/2 \hspace{1cm} (34)$$

$$PE = m_o gh \hspace{1cm} (40)$$

where g is acceleration due to gravity and h is height at which body is placed.

5.2 Origin and interpretation of Rest Mass Energy

It can be carefully noted that equations $E_o = m_o c^2$, $E_{rel} = m_r c^2$, $KE_{rel} = (m_r - m_o)c^2$, $KE = m_o v^2/2$, $PE = m_o gh$ are originated from the same equation i.e.

$$dW = dK = Fdx cos \Theta \hspace{1cm} (41)$$

If the force (F) causes displacement (dx) in its own direction then, $\Theta = 0^\circ$ or $cos 0^\circ = 1$, thus

$$dK = dW = Fdx \hspace{1cm} (42)$$

Einstein gave a direct result [2] relativistic form of kinetic energy for slowly accelerated electron in Section (10) and then generalized it for all ponderable masses. In the same paper he introduced Special Theory of Relativity. If velocity is in relativistic region ($v \sim c$) then Eq.(42) becomes

$$dK = dW = Fdx = \frac{d}{dt} \{m_r v\} dx = m_r vdv + v^2 dm$$

Differentiating Eq.(6) i.e. $m_r = \beta m_o$ we get

$$m_r vdv + v^2 dm = c^2 dm$$

Or

$$dK = dW = c^2 dm$$

$$KE_{rel} = W_{rel} = c^2 (m_r - m_o) \hspace{1cm} (12)$$

{Kinetic Energy attained by body due to influence of external force when body moves in direction of force with velocity v, which is comparable to c, speed of light}

$$= c^2 (m_r - m_o) = (\text{Increase in mass of body due to relativistic velocity}) c^2 \hspace{1cm} (12)$$

or

{Work done by body due to influence of external force when body moves in direction of force with velocity, v which is comparable to c, speed of light}

$$= c^2 (m_r - m_o) = (\text{Increase in mass of body due to relativistic velocity}) c^2$$

From Eq.(12) Newtonian form of kinetic energy can be obtained.
If \(m_r \) and \(m_o \) are the same then relativistic form of kinetic energy or work done is zero.

If velocity \(v \) is in classical region (\(v \ll c \)) then Eq.(12) reduces to classical form of KE i.e.
\[
K = \left(m_o \sqrt{1 - \frac{v^2}{c^2}} \right) = m_o \left(1 + \frac{v^2}{2c^2} + \frac{3v^4}{8c^4} + \cdots \right) = m_ov^2/2
\]

If this condition is applied to original Eq. (42) then Newtonian form of kinetic energy is obtained
\[
K = \frac{d}{dt} \{m_o v\} = \frac{m_o v^2}{2}
\]

\[\text{(34)}\]

5.3 Deduction of Rest Mass Energy by Einstein from Eq.(12)

In 1907 Einstein [3] deduced Rest Mass Energy after terming \(m_r c^2 \) as total energy or relativistic energy (\(E_{\text{rel}} \)) as \(m_r \) is relativistic mass.

\[
KE_{\text{rel}} = (m_r - m_o)c^2 \quad (12)
\]
\[
m_r c^2 = KE_{\text{rel}} + m_o c^2 \quad (12a)
\]

Einstein re-christened Eq.(12a) as relativistic energy \(E_{\text{rel}} \) or total energy
\[
E_{\text{rel}} = m_r c^2 = KE_{\text{rel}} + m_o c^2 \quad (39)
\]

When body is at rest \(v = 0 \), \(dx = 0 \) or \(dK = Fdx = 0 \) then Einstein wrote
\[
E_{\text{rel}} \quad \text{(when} \ v = 0 \text{)} = m_o c^2 = 0 + m_o c^2
\]

Then Einstein expressed \(E_{\text{rel}} \) (when \(v = 0 \)) as Rest Mass Energy (\(E_o \)). Thus,
\[
E_{\text{rel}} \quad \text{(when} \ v = 0 \text{, } dx = 0 \text{ or } dK = Fdx = 0 \text{)} = \text{Rest Mass Energy, } E_o = m_o c^2 = 0 + m_o c^2
\]

(38)

This inference needs to be critically discussed when body is at rest (\(v = 0 \), \(dx = 0 \)) as very first equation(\(dK = Fdx = 0 \)) is zero and intermediate equations do not exist. Hence Einstein’s the rest mass energy is a mathematically and conceptually non-existent physical quantity, as obtained from invalid mathematical operation.

5.4 Invalidity or inconsistencies in Einstein’s deduction i.e. in Eq.(39)

If an equation is re-arranged or re-christened (simply transposing without multiplication, division, addition and subtraction of any term), then results from original equation and new transformed equation must be the same. Also final equation cannot be interpreted under the condition when very first equation is zero and preceding equations don’t exist. But his simple logic is not satisfied or obeyed by Einstein’s interpretation of rest mass energy. We have,
\[
KE_{\text{rel}} = (m_r - m_o)c^2 \quad (12)
\]
\[
KE_{\text{rel}} + m_o c^2 = m_r c^2 \quad (12a)
\]

Total energy or Relativistic Energy \(= m_r c^2 = KE_{\text{rel}} + m_o c^2 \quad (39)\)

Now the Eq.(12), Eq.(12a) and Eq.(39) are exactly the same. Thus these equations under similar conditions e.g. when body is at rest (\(v = 0 \), \(dx = 0 \), \(dK = Fdx = 0 \)) must lead to similar results. Hence substituting \(v = 0 \), in all three equations.

(a) Firstly, in Eq.(12),
\[
0 = (m_o - m_o)c^2 = 0
\]
Thus under this condition $v = 0$, Eq. (12) does not give any physical information. The reason is that under this condition first equation i.e. $dK = Fdx = 0$, hence subsequent equations don’t exist and final equation cannot be interpreted.

(b) Secondly, in Eq.(12a)

\[0 + m_o c^2 = m_c c^2 \]

or \[1 = 1 \quad \text{or} \quad 1 - 1 = 0 \]

Thus again in this case Eq. (12a) does not give any physical information, hence cannot be interpreted regarding E_o and m_o. The reason is exactly as above.

(c) Thirdly, in Eq.(39),

Relativistic Energy \(v = 0 \) = $m_o c^2 = 0 + m_o c^2$ \hspace{1cm} (43)

The equation can be interpreted as when body is at rest then,

Relativistic energy (dependent on velocity) is zero as in this case kinetic energy is zero. Thus,

\[0 = m_o c^2 = 0 + m_o c^2 \]

\[0 = m_o c^2 = m_c c^2 \]

m_o and c^2 both are non-zero and their product cannot be zero. Hence, as in previous cases under this condition \((v=0, Fdx = 0)\) the equation cannot be interpreted. It is further supported by Eq.(42) as $dK = Fdx$ or $dK = F.0 = 0$

Thus if very first equation and subsequent equations do not exist thus further interpretation is not only invalid but impossible.

5.5 Einstein’s arbitrary explanation

Without taking the fact in account that when body is at rest then $dK = Fdx = 0$, Einstein tried to interpret the equation in such a way that result may have resemblance with Eq.(10) or Eq.(37) i.e.

\[\Delta L = \Delta m c^2 \quad \text{or} \quad \Delta E = \Delta m c^2 \]

Relativistic Energy \(v = 0, dx = 0 \) or $dK = Fdx = 0$ \(E_o = 0 + m_o c^2 \)

Thus Eq.(39) becomes

Relativistic Energy \(v = 0, Fdx = 0 \) \(E_o = 0 + m_o c^2 = m_o c^2 \)

Einstein interpreted the equation as relation between rest mass, m_o and rest mass energy E_o. In the process following facts were ignored

(i) When body is at rest then very first equation vanishes i.e.

\(dK = dW = Fdx = 0 \)

and all other equations are non-existent. Thus to draw any conclusion from the imaginary equations is purely HYPOTHETICAL and has no logical and mathematical basis.

(ii) The Eq.(12) and Eq.(12a) are originating forms of Eq.(39). Under similar conditions the results from Eq.(12) and Eq.(12a) are the same but from Eq.(39), which is just other form of Eq.(12) and Eq.(12a) are different. Hence Eq.(39) may be regarded as illogically re-christened.
5.6 Δm in equations $\Delta m = \Delta L/c^2$ or $\Delta m = \Delta E/c^2$ is different from m_0 in $E_o = m_0c^2$,

$$KE_{rel} = (m_r - m_o)c^2,$$

$KE = m_0V^2/2$ or $U = m_0 gh$ or $p = m_0v$

This conclusion is justified by following illustrations

(i) Origin and meaning of Δm:

Out of above equations only Eqs(10,37) represent mass annihilated to energy or energy materialized to mass. Here Δm is mass actually annihilated to energy or mass created on annihilation of energy.

For hydrogen isotope deuterium [7],

The expected mass is 2.0165 amu i.e.

Mass of $^1H^1$ atom + Mass of neutron = 1.0078 amu + 1.0087 amu = 2.0165 amu

Experimentally measured mass of deuterium = 2.0141 amu

Mass defect = Expected mass – measured mass = 0.0024 amu

Energy equivalent to mass defect = $(0.0024 \text{amu}) \times 931 \text{MeV/amu} = 2.2 \text{MeV}$

Here Δm is mass defect 0.0024 amu, i.e. mass which is actually converted to energy.

Hence Δm is not equal to actual mass of deuterium i.e. 2.0165 amu. Thus here Δm (0.0024 amu) is given in Eq.(10) or Eq.(37) i.e. $\Delta m = \Delta L/c^2$ or $\Delta m = \Delta E/c^2$ rather than m_0 in equation $m_0 = E_o/c^2$

Einstein has considered in his derivation that mass of body decreases when light energy is emitted and given by

$$M_b \frac{v^2}{2} - M_a \frac{v^2}{2} = L \frac{v^2}{2c^2}$$

Or Mass of body before emission (M_b) – Mass of body after emission (M_a) = L/c^2

Analogously above equation for deuterium binding energy can be written as

Mass of free nucleons – Mass of bound nucleons = Binding Energy (B.E.)/c2

$\Delta m (M_b - M_a) = \Delta L/c^2 = (\text{B.E.})/c^2$ (10)

Then from Eq.(10) general form mass energy equation i.e. $\Delta E = \Delta mc^2$, is speculated

(ii) The meaning of m_0 is same as in all equations

The rest mass m_0 is related with relativistic mass m_r as

$$m_r = m_0 / \sqrt{1 - v^2/c^2}$$

This equation existed before Einstein’s Special Theory of Relativity and was used by him in the same [2]. Kauffman [9] verified it in 1901 and more comprehensively by Bucherer [10] in 1908.

According to this if body is at rest or moving with slow velocity, then

Relativistic mass = Rest mass i.e $m_r = m_o$

The term rest mass occurs in equations, $E_o = m_0c^2$, $KE_{rel} = (m_r - m_o)c^2$, $m_0v^2/2$ and m_0gh. Now equation $E_o = m_0c^2$ cannot be interpreted as energy E_o produced on annihilation of rest mass m_0, or when energy E_o is materialised then rest mass m_0 is produced, as these are not defined for the purpose. If so then it is equally feasible to interpret that when m_0 is annihilated then KE and PE both must increase and must be given by equations $m_0v^2/2$ and m_0gh. In these terms c is not involved. The
same argument is valid for \(\text{KE}_{\text{rel}} = (m_r - m_o)c^2 \). Can similar explanation be speculated for momentum \(p = m_o v \) (defined under classical conditions)? Each equation is derived under characteristic conditions and is applicable under those conditions only. Hence annihilation of mass to energy or materialization of energy to mass is only explained on the basis of Eq. (10) only or its speculative generalisation i.e. \(\Delta E = A c^2 \Delta M \).

6.0 A New or Generalised Form of Mass Energy Equivalence as \(\Delta E = A c^2 \Delta M \)

In view of serious mathematical limitations of Einstein’s derivation, the Mass-Energy equation is derived in independent ways. Here we start with a new method which is non-relativistic in nature {as Eq. (6) is not involved}, as mass can be annihilated to energy when velocities of reactants are in classical region. This aspect is justified as in fission of \(^{235}\text{U} \), secondary neutrons produced originally have energy 1-2 MeV (velocity in relativistic region), it is reduced to 0.025 MeV (2185 m/s) with help of moderator (such as heavy water); otherwise nuclear fission does not take place. This velocity is classical in region and even orbital velocity of the earth \(3 \times 10^4 \text{m/s} \) is in classical region. Interestingly derivation of Einstein’s Eq. (10) started from relativistic equation i.e. Eq. (1), but finally derived results classically by applying Binomial Theorem as cited above. In the whole derivation relativistic variation of mass i.e. \(m_r = \beta m_o \) as given by Eq. (6) is not taken in account.

Further scientists are continuously suggesting the variations (increase or decrease) in magnitudes of \(c \) [18-19] if materialised then this derivation of \(\Delta E = \Delta mc^2 \) will become invalid or energy emitted will be less or more than predicted by Einstein’s equation. Then existing phenomena cannot be explained with help of Einstein’s \(\Delta E = \Delta mc^2 \).

In 18th century Lavoisier stated that the law of conservation of matter in chemical reactions. The first idea of mass energy Interco version was given by Fritz Hasenohrl. [1] in 1904. However there are a few scientifically unconfirmed counterclaims about it \(\Delta E = \Delta mc^2 \). In 1905 Einstein mathematically derived interconvert ability equation between mass and energy as \(\Delta L = \Delta mc^2 \), according to this conversion factor between mass and energy is precisely and rigidly is \(c^2 \). Whereas according to \(\Delta E = A c^2 \Delta M \), the conversion factor between mass and energy may or may not be \(c^2 \).

Here the derivation involves calculation of infinitesimally small amount of energy \(dE \) when small amount of mass \(dm \) is converted (in any process) into energy (energy may be in any form i.e. light energy, sound energy, energy in form of invisible radiations etc); then

\[dE \propto dm \]

In the existing literature conversion factor \(c^2 \) between mass and energy has been experimentally confirmed. Thus in above proportionality, it can be taken in account as,

\[dE \propto c^2 dm \quad \text{or} \quad dE = A c^2 dm \quad (48) \]

where \(A \) is used to remove the sign of proportionality it has nature like Hubble’s constant {50 to 80 kilometres per second-Mega parsec (Mpc)} or like coefficient of viscosity \((1.05 \times 10^{-3} \text{ poise to} \ldots) \).
19.2×10^6 poise) or coefficient of thermal conductivity (0.02 Wm⁻¹K⁻¹ to 400 Wm⁻¹K⁻¹ etc) or decay constant λ in radioactivity, also force constant or spring constant, k is similar other example. It may be termed as conversion–coefficient, as it highlights extent of conversion of mass to energy or vice versa and depends upon the characteristics and intrinsic conditions of a particular process.

Further, conversion–coefficient A is consistent with Newton’s Second law of motion or Axiom II as quoted in Book I of *the Principia* in Latin (first translation in English by Andrew Motte, 1729 subsequent disseminations has directly used acceleration).

“The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed”.

Mathematically,

\[F \propto a \quad \text{or} \quad F = m_o a \quad (49) \]

where \(m_o \) (mass) is constant of proportionality which varies from one situation to other, similar is nature of A (conversion co-efficient) or Hubble’s constant etc. Likewise in law of gravitation \(G \) is constant.

Let in some conversion process mass decreases from \(M_i \) to \(M_f \) and energy increases from \(E_i \) to \(E_f \). Initially when no mass is converted into energy, \(E_i = 0 \). Thus integrating Eq. (48) we get,

\[E_f - E_i = A c^2 (M_f - M_i) \quad (50) \]
\[\Delta E = A c^2 \Delta M \quad (51) \]

Energy evolved = \(A c^2 \) (decrease in mass)

(i) If the initial and final masses remain the same, then \(M_i = M_f \), then \(\Delta E \), the Energy evolved is zero.

(ii) If the characteristic conditions of the process permit and whole mass is converted into energy i.e. \(M_f = 0 \), then Eq.(50) becomes

\[\Delta E = - A c^2 M_i \quad (52) \]

Here energy evolved is negative implies that energy is created at the cost of mass; and reaction is exothermic in nature, also energy is scalar quantity, hence only magnitude is associated with it and not direction. In case of annihilation of electron-positron pair all the mass is converted into energy i.e. \(M_f = 0 \), so the energy emitted is consistent with Einstein’s Mass- Energy Equivalence i.e. \(\Delta E = A c^2 \Delta M \).

Thus in this case value of A is unity, hence in this case Eq.(50) becomes,

\[\Delta E = - c^2 \Delta M = - c^2 M_i \quad (53) \]

(iii) If \(\Delta E \) is positive, means the additional mass has been supplied to the system of \(M_f \) is more than \(M_i \) but in Eq.(50) annihilation of mass into energy is being discussed, so this case is irrelevant.

Further Eq.(50) implies that if initial and final energies are equal (\(E_f = E_i \)), then no mass is annihilated. The created mass is maximum if all the energy is materialised into mass i.e. \(E_f = 0 \) (e.g. materialisation of gamma ray photon).
Thus mass-energy equivalence may be stated as

“The mass can be converted into energy or vice-versa under some characteristic conditions of the process, but conversion factor may or may not always be c² (9 × 10¹⁶ m²/s²) or c⁻²”

6.1 The Eq.(51) can be obtained by method of Dimensions.

Let the energy emitted (∆E) on annihilation of mass, depends upon annihilated mass (∆M) as dimensions; a, depends upon speed of light c, as dimensions b and depends upon time t as dimensions c. Thus as in other cases in existing physics, ∆E can be expressed as

\[\Delta E \propto (\Delta M)^a c^b t^c \]

\[\Delta E = A (\Delta M)^a c^b t^c \quad (54) \]

where A is constant of proportionality and is called Conversion Co-efficient. According to principle of dimensional homogeneity, the dimensions of both the sides must be the same. Hence

\[ML^2T^{-2} = A M^a (LT^{-1})^b T^c \]

Comparing the dimension of the both sides

\[a=1, \quad b=2 \quad \text{and} \quad -2 = -2 +c \quad \text{or} \quad c = 0 \]

Now Eq.(54) becomes

\[\Delta E = A \Delta Mc^2 t^0 = A c^2 \Delta M \quad (51) \]

Hence the same result is obtained by the method of dimensions also.

6.2 The variation in magnitude of ‘A’ is consistent with existing Physics.

Now obvious question is how should the co-efficient A vary i.e. on what factors does it depend or get influenced? The answer for question of dependence or variation of co-efficient of proportionality A is precisely same as answer for all other proportionality constants or co-efficients in existing physics. The co-efficient A does not have any special characteristics neither in regard to its origin nor interpretation and estimation. All such constants or co-efficients of proportionality in existing physics depend upon the intrinsic characteristics conditions and parameters which influence the results directly or indirectly; hence the same is precisely true for A. The constant of proportionality may arise by method of conceptual derivation or by method of dimensions always determined experimentally. The co-efficient A is dimensionless due to reason that it is introduced in existing equation of energy, and dimensions of energy has to be ML²T⁻² same in both sides, in F=kma, k is also dimensionless. In physics the same entity may behave in different ways under different conditions. For example a single wave of radiations behaves like both wave and particle; also atomic particle electron behaves like both wave and particle depending upon characteristic conditions. Thus status of conversion co-efficient A and its magnitude is consistent with existing physics.

If the constant of proportionality varies from one system to other (which is realistic situation in many cases), then it is termed as co-efficient e.g. coefficient of viscosity η, co-efficient of thermal conductivity, co-efficient of elasticity (Young’s modulus, Bulk
Modulus, Modulus of rigidity) etc. Analogously Hubble’s constant must be better called Hubble’s co-efficient, as there is significant variation in its value for various heavenly bodies. The generalised trends of various constants or co-efficients of proportionality are shown in Table I.

Table I

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Constant or co-efficient of proportionality</th>
<th>Variation in magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hubble’s constant</td>
<td>50 to 80 kilometres per second-Mega parsec (Mpc)</td>
</tr>
<tr>
<td>2</td>
<td>Co-efficient of thermal conductivity</td>
<td>0.02Wm⁻¹K⁻¹ to 400 Wm⁻¹K⁻¹</td>
</tr>
<tr>
<td>3</td>
<td>Coefficient of elasticity</td>
<td>(3-200) ×10⁸ N/m²</td>
</tr>
<tr>
<td>4</td>
<td>Co-efficient of viscosity</td>
<td>1.05×10⁻³ poise to 19.2×10⁶ poise</td>
</tr>
<tr>
<td>5</td>
<td>Decay constant (0.693/T₁/₂)</td>
<td>10⁻¹⁵ s⁻¹ – 10⁻¹⁰ s⁻¹ (general trend)</td>
</tr>
<tr>
<td>6</td>
<td>Constant in Second law of motion (F=kma)</td>
<td>k=1</td>
</tr>
<tr>
<td>7</td>
<td>Universal Gravitational constant G.</td>
<td>6.673(10) × 10¹¹ m³ kg⁻¹ s⁻¹ (showing increase)</td>
</tr>
<tr>
<td>8</td>
<td>Acceleration due to gravity g</td>
<td>9.80665 m s⁻² (varies from place to place)</td>
</tr>
<tr>
<td>9</td>
<td>Einstein’s conversion constant (ΔE=Δmc²)</td>
<td>c² or 9 × 10¹⁶ m²s⁻² (universal constant)</td>
</tr>
<tr>
<td>10</td>
<td>Generalized equation’s (ΔE = Ac²ΔM)</td>
<td>Ac² or A 9 × 10¹⁶ m²s⁻²</td>
</tr>
</tbody>
</table>

The co-efficient of thermal conductivity, K is given by

\[K = \frac{Qd}{A(T₁-T₂)t} \]

(52)

where Q is heat transmitted, d is thickness between surfaces, t is time for which heat flows, T₁ is temperature of one face and T₂ that of the other. Similarly Hubble constant, H is ratio of velocity of recession, V and distance of heavenly body, D i.e.

\[H = \frac{V}{D} \]

(53)

Thus to determine H, V and D both are measured. The decay constant in radioactivity,

\[\lambda = \frac{0.693}{T₁/2} \]

(54)

The value of T₁/₂ (half life time) elementary particles vary from 10⁻⁶ s to 10⁻²³ s and for uranium-238 is 4.5 billion years, depending upon their inherent characteristics and accordingly decay constants vary. Further decay constant cannot predict why half life of one particular particle is 10⁻¹⁰ s and other element 1 billion year. It simply equates physical quantities in LHS and RHS. Similar is the status of other proportionality constants or co-efficients and including A as in Eq.(51)

Even in Einstein’s \(ΔE = Δmc² \), the conversion constant between mass annihilated and energy created (in any form) is \(c² (ΔE/Δm) \), which is like universal constant (as k in
F = kma). However, there are proposals for increase or decrease in value of c [18-19]. If these proposals for variations in values of c matured then Einstein’s equation \(\Delta E = \Delta mc^2 \) will become quantitatively invalid. Then equation \(\Delta E = Ac^2 \Delta M \) will be applicable, as it predicts energy emitted can be less, equal or more than \(\Delta E = \Delta mc^2 \) due to presence of A. Similarly the value of A is given by \(A = \frac{\Delta E}{c^2 \Delta M} \)

Thus irrespective of status of c the generalized equation remains valid.

The variation of value of A can be understood in three categories, as emission of energy is observed in different reactions e.g. chemical reactions, nuclear reactions and reactions taking place in heavenly bodies.

The value of G in various experiments is appearing to be higher than the current accepted value; purposely sensitive experiments have been reported in this regard by a team of scientists from University of Washington, J H Gundlach et al. [24] A depends upon the characteristics and intrinsic conditions of a particular process; and is like dimensionless variable. For example, \(_{92}^{235}\text{U} \) undergoes nuclear fission but not \(_{26}^{57}\text{Fe} \). Further for nuclear fission to take place, in chain reaction fast moving neutrons (energy 1-2 MeV, velocity in relativistic region) are produced, these are slowed down and called thermal neutrons (0.025 MeV, velocity 2185 m/s) with help of moderator. Whereas an intrinsic condition for nuclear fusion is that temperature must be of the order of \(10^6K \), the feasible conditions to cause fission of \(_{26}^{56}\text{Fe} \) have not been achieved yet. Such characteristics conditions are taken in account by constant of proportionality this aspect is established in existing physics, and in generalised form of mass-energy equation the same is taken in account by A

Energy may be in different forms e.g. heat energy, light energy, sound energy, electrical energy, chemical energy, atomic energy etc. under different conditions. Or in some particular process, the energy may coexist in different forms under different conditions e.g. in explosion of nuclear bomb, heat, sound, light and energies in forms of invisible radiations are released simultaneously. Thus along with characteristics and intrinsic conditions of the processes, the value of A varies from unity.

In nuclear explosion \(\Delta E = \Delta mc^2 \), is regarded as to be confirmed when energy emitted in form of heat, light and sound, but there is no quantitative observations about mass annihilated; amount and proportion of various energies emitted in the detonation. As the energies in form of heat, sound and light are not measured precisely, hence this should not be regarded as quantitatively confirmed in such uncontrolled nuclear explosion. Even then Einstein’s \(\Delta E = \Delta mc^2 \), is regarded as confirmed as matter of faith in such cases.

Depending upon the inherent characteristics of the reaction the energy emitted in each type of reaction is different, thus like other proportionality factors (constants or co-efficients) the value of A varies as described below.
If energy emitted (ΔE) corresponding to annihilation of mass (ΔM) is such that ratio ($\Delta M / \Delta E$) is equal to $1/c^2$, then in generalized equation $\Delta E = Ac^2 \Delta M$, the value of A equals unity ($A = 1$). $\Delta E / \Delta M$ depends upon inherent characteristics of the process. In generalized mass energy interconvertibility equation $\Delta E = Ac^2 \Delta M$, the value of A is unity ($A = 1$) for nuclear reactions. Thus in this case the generalized equation reduces to Einstein’s $\Delta E = \Delta m c^2$. $\Delta E = \Delta m c^2$, is a basic or standard equation in nuclear physics as used in deriving relationship $1 \text{amu} = 931.49 \text{ MeV}$, hence all masses are expressed using it. Here basic assumption is that speed of light will always remain constant, i.e. $c^2 = \Delta E / \Delta m = \text{Any type of energy created / Mass annihilated.}$ otherwise all estimations will vary. Hence this discussion gives another but indirect method of determination of speed of light. Also there are both theoretical and experimental variations in value of c [5-6], as fine structure constant ($\alpha = e^2 / (\hbar c)$) is reported to be increasing over cosmological timescales, implying slowing down of speed of light, c.

(ii) If energy emitted (ΔE) corresponding to annihilation of mass (ΔM) is such that ratio ($\Delta M / \Delta E$) is less than $1/c^2$, then in generalized equation $\Delta E = Ac^2 \Delta M$, the value of A is more than unity ($A > 1$).

(a) In this case practical example is energy measured in case of Gamma Ray Bursts and Quasars. It is inherent characteristic of these heavenly events that energy emitted for mass is far higher than predicted by $\Delta E = c^2 \Delta M$.

(b) In SLAC mass of particle, Ds (2317) experimentally observed, was found less than expected estimates [32], it can also be explained with generalized mass–energy interconvertibility equation, $\Delta E = Ac^2 \Delta M$ with value of A more than one.

(iii) If energy emitted (ΔE) corresponding to annihilation of mass (ΔM) is such that ratio ($\Delta M / \Delta E$) is more than $1/c^2$, then in equation $\Delta E = Ac^2 \Delta M$, the value of A is less than unity ($A < 1$).

In generalized equation $\Delta E = Ac^2 \Delta M$, the value of A is less than unity ($A < 1$) if small energy (ΔE) is materialized to large mass (ΔM).

(a) Before Big Bang mass of the order of 10^{55} kg has been produced from diminishing amount of energy which may be regarded as present in the space at that time, and value of A is less than one. In this case Einstein’s $\Delta E = \Delta m c^2$, requires reserve energy of order of 10^{72} J created out of nothing this energy is materialized to mass $10^{55} \text{ kg} (E/c^2)$.

(b) In chemical reactions $\Delta E = \Delta m c^2$ has not been confirmed, but regarded as precisely true which is unscientific as there is vast difference between chemical and nuclear reactions. The reason for non-confirmation is that experimental precision is too less to measure the mass annihilated in the process. As experimental precision is increasing, and at some stage experiments are conducted and amount of energy created (ΔE) is found less than predicted by $\Delta E = \Delta m c^2$ corresponding to mass annihilated (ΔM); then value of A less than one may be confirmed.

It implies that conversion factor between mass and energy can be less or more than c^2, unlike in $\Delta E = \Delta m c^2$ (where the conversion factor is always c^2). There are both experimental
and theoretical proposals [18-19] for variation in value of c (3\times10^8 \text{ m/s}) if these proposals are materialised, then energy emitted for annihilation of same mass will be less or more than \(\Delta E = \Delta mc^2\). Then only equation \(\Delta E = Ac^2 \Delta M\) will explain the phenomena. Thus the latest trends in advances in research also favour the generalised form of mass–energy equivalence.

6.3 Conversion of energy from one form to other.

In electric bulb electrical energy changes to light energy, in radio electrical energy is converted into sound energy, in cell chemical energy is changed to electrical energy, in photocell light energy changes to electrical energy there are many such examples of inter conversion of one form of energy to other. How much mass is associated with these inter-conversions of energy from one form to other? If these are pure examples of inter-conversion of energy from one form of energy to other. The energy in one form may be regarded as proportional to other e.g.

\[
\text{Light energy} = k \text{ Electrical energy.} \tag{55}
\]

where \(k\) is a co-efficient which determines the characteristics of conversion of light energy to electrical energy. The Eq. (55) is similar to relation between heat and work (\(W=JH\)). Likewise similar equations can be written for other forms of energy and can be verified.

7.0 New Experiments to confirm the validity of \(\Delta E = Ac^2 \Delta M\) in chemical reactions

Till date Einstein’s \(\Delta E = \Delta mc^2\) has not been confirmed in chemical reaction [7, 25-26] but regarded as true which is unscientific. The reason for non-confirmation of \(\Delta E = \Delta mc^2\) advocated at the moment is that existing experimental techniques are not enough adequate and sensitive to measure small amount of mass annihilated. Purposely a reaction from the existing standard literature is cited as quoted by Halliday [26], suppose that 1.0 mol of (diatomic) oxygen interacts with 2.0 mol of (diatomic) hydrogen to produce 2.0 mol of water vapour, according to reaction,

\[
2\text{H}_2 + \text{O}_2 = 2\text{H}_2\text{O} + Q \quad (4.85 \times 10^5 \text{J})
\]

The energy released in the reaction is 4.85\times10^5 \text{J}. According to \(\Delta E = \Delta mc^2\) this energy is equivalent to mass \(5.39 \times 10^{-12} \text{ kg}\) (or \(5.92 \times 10^{18}\) electronic masses). Thus the mass of reactants decreases and converted into energy and mass is fraction of electronic masses. It means that hydrogen and oxygen (hence electron, protons and neutrons) become lighter by mass \(5.39 \times 10^{-12} \text{ kg}\). But this aspect has not been discussed even theoretically in speculative way in the existing literature. Does it mean that mass of elementary particles electrons, protons and neutrons decreases in products after chemical reactions? Or does it mean that masses of the order of fraction of electron are possible (for transference, annihilation or creation), as charges of the order of fraction of electronic charge are considered in Quark concept? If so then this deduction is consistent with concept of proposal that electrons consist of sub-particle. So all possibilities has to be discussed. Or does it mean that \(\Delta E = \Delta mc^2\), does not hold good in chemical reactions? But in this regard key factor (to answer every query) is precise measurement of annihilated mass, which has not been done yet. The precision in measurements can be
increased by increasing technically the least counts of equipments and
(i) increasing mass of reactants, so that energy released and mass annihilated is more.
(ii) choosing the reactants which emit more energy e.g. energy emitted in combustion of petrol is
more than that of paper or wood etc.

7.1 Comparison of nuclear and chemical reactions

It is unscientific to regard $\Delta E = \Delta mc^2$ correct and valid in chemical reactions, just for the
reason that it is confirmed in nuclear reactions. The chemical and nuclear reaction differ significantly
on the following counts.

(a) In nuclear reactions, the heavy nucleus of the reactants is split up and new elements are produced.
(b) In chemical reactions there is simple re-adjustment of atoms and energy emitted is less. Further the
decreases in masses of reactants have never been measured with desired precision experimentally in
chemical reactions yet.

For example in fission of $^{235}_{92}$U, masses of reactants (uranium and a neutron), is less than sum of
individual masses products ($^{141}_{56}$Ba and $^{92}_{36}$Kr and three neutrons) Here $^{141}_{56}$Ba and $^{92}_{36}$Kr are entirely
new elements, having different masses and binding energies. But it is not so in chemical reactions at
all.

Apparently there is immense conceptual difference between annihilation of electron positron pair,
in nuclear reaction, and in combustion (e.g. burning of paper) as described above. Thus such
experiments are likely to play decisive role in confirming the value of A less than unity in $\Delta E = A c^2$
ΔM, which is an open prospect so far i.e. yet $\Delta E = c^2 \Delta M$ is not confirmed directly in chemical
reactions.

According to $\Delta E = \Delta mc^2$, in annihilation of 10^{-6} kg of $^{235}_{92}$U (in nuclear fission), 10^{-6} kg of
hydrogen (in nuclear fusion), 10^{-6} kg of wood or paper or petrol (in combustion), precisely same
amount of energy i.e. 9×10^7 J. So, 9×10^7 J of energy can take a body of mass 1kg to a distance of
9×10^7 m or 9×10^4 km. Secondly, this heat energy i.e. 2.15×10^7 calories (1J = 0.23889 calorie),
is sufficient to raise temperature of water 2.15×10^4 kg through 1°C; this amount of water can be
contained in a cubical tank of each side 27.8 m nearly. Thus key lies in the precise measurement of
annihilated mass and rise in temperature.

7.2 The estimation of value of A in chemical reactions.

Till date mass annihilated in chemical reactions has not been experimentally measured; so the value of
conversion co-efficient can be estimated under the assumption that the value of mass annihilated is
less than predicted by $\Delta E = \Delta mc^2$. Let mass annihilated in chemical reaction be 10^{-6} kg then energy
equal to 10^3 J is assumed to be produced (instead of $\Delta E = \Delta mc^2$ i.e. 9×10^{10} J)
Then according to $\Delta E = A c^2 \Delta M$, the value of A can be determined as

$$A = \frac{\Delta E}{c^2 \Delta M} = \frac{10^3}{9 \times 10^{10}} \times 10^{-6} \text{kg} = 1.11 \times 10^{-6} \quad (56)$$
In view of Eq. (56), the generalised form of Mass-Energy equation becomes
\[\Delta E = 1.11 \times 10^{-6} c^2 \Delta M \]
(57)

Thus \(\Delta E = \Delta m c^2 \) must be specifically confirmed in chemical reactions to complete unfinished experimentation for understanding of \(\Delta E = \Delta m c^2 \)

8.0 \(\Delta E = A c^2 \Delta M \) in Cosmology

For determination of \(A \), the value of \(\Delta M \) i.e. mass annihilated in case of heavenly body is required; which can not be directly measured like many other parameters. Thus, initially for simplicity or calibration (standard or reference can be chosen) the magnitude of value of \(\Delta M \) is regarded as 4.32\texttimes{}10^9 \text{kg} i.e. mass annihilated in case of sun (luminosity of the sun is 3.89\texttimes{}10^{26} \text{Js}^{-1}), thus
\[\Delta M = \Delta E/c^2 = 3.89 \times 10^{26} \text{Js}^{-1} / 9 \times 10^{16} \text{m}^2 \text{s}^{-2} = 4.32 \times 10^9 \text{kg} \]
(58)

If for some cases the value of \(\Delta M \) is experimentally measured then its actual value (\(\Delta M \)) can be used instead of Eq.(58). Many more such phenomena may be revealed as innovative precision in investigative measurements is increasing continuously

8.1 Gamma Ray Bursts

Gamma ray bursts (GRBs) are intense and short (approximately 0.1-100 seconds long) bursts of gamma-ray radiation that occur all over the sky approximately once per day and originate at very distant galaxies (several billion light years away). GRBs are the most energetic events after the Big Bang in the universe and energy emitted is approximately \(10^{45} \text{J} \) with the most extreme bursts releasing up to \(10^{47} \text{J} \). This energy cannot be explained with \(\Delta E = c^2 \Delta m \) (precisely confirmed in nuclear reactions). This is also the amount of energy released by 1000 stars like the Sun over their entire lifetime! It implies that for annihilation of dwindling mass in short time unimaginably high amount of energy is emitted, which can be explained with help of \(\Delta E = A c^2 \Delta M \) with exceptionally high value of \(A \). If for simplicity the value of \(\Delta M \) can be taken standard as in Eq.(58) as actual estimate of \(\Delta M \) for GRBs is not available, then
\[A_{\text{grb}} = \Delta E / c^2 \Delta M = 10^{45} / 9 \times 10^{16} \times (4.32 \times 10^9) = 2.57 \times 10^{18} \]
(59)

or \[\Delta E = 2.57 \times 10^{18} c^2 \Delta M \]
(60)

Hence all conversions of mass to energy in nature, is not always according to \(\Delta E = c^2 \Delta m \)., where \(c \) is the conversion factor like universal constant. In the GRBs intense and short bursts of gamma-ray radiation are emitted; which implies for small mass (simply gamma rays), in small region, in small time huge amount of energy is liberated. It is direct confirmation for \(\Delta E = A c^2 \Delta M \) with very high value of \(A \) i.e. for annihilation of small mass (burst of Gamma Ray), in short time enormous amount of energy is emitted (in this case \(2.31 \times 10^{32} \text{J} \) for annihilation of \(10^{-3} \text{kg} \)) which is \(2.57 \times 10^{18} \) times more than \(\Delta E = c^2 \Delta m \). However the actual value of \(A_{\text{grb}} \) will be more when exact values of \(\Delta m \) corresponding to energy emitted will be experimentally determined, instead of standard value as
given by Eq.(57).

2.2 Quasars

The observations taken with the 2.5-meter Isaac Newton Telescope at La Palma in the Canary Islands reveals that the quasar is 4 million-billion \((15.56 \times 10^{41} \text{ Js}^{-1})\) to 5 million-billion times brighter than the Sun or this energy is thousand times more than emitted by the brightest galaxy. The most peculiar characteristics of Quasar is reported by Arav et al. [30] that this prodigious amount of energy is generated in a small region approximately \textbf{one light year} across. By comparison the diameter of the Milky Way is about \textbf{100,000 light years}. It implies corresponding to a small region (a measure of mass and its hence annihilation) mammoth amount of energy is emitted in case of Quasars. \(\Delta E = Ac^2 \Delta M\) is useful in explaining such aspects. Now

\[A_{qu} = \frac{\Delta E}{c^2 \Delta M} = 15.56 \times 10^{41} \text{ Js}^{-1}/9 \times 10^{16} \times (4.32 \times 10^9) = 4 \times 10^{16} \]

With this value of the generalized mass-energy inter convertibility equation becomes,

\[\Delta E = 4 \times 10^{16} c^2 \Delta M \quad (61) \]

Thus corresponding to small mass (size) energy emitted is more thus comparatively smaller quasars or in general smaller bright objects are feasible. So in small region even when small amount of mass is annihilated, huge amount of energy is emitted. The lower limit of Quasars mass is not yet determined, Vestergaard [29]. It is further justified from the fact that the Quasars possibly or inexorably ending as super massive black holes, presently the maximum mass is of the order of \(2 \times 10^{40} \text{ kg}\), Vestergaard [28]. Thus inspite of emitting huge amount of energy in own life time, significant amount of matter is remnant in Quasar and which are expected to behave like super massive black hole, this aspect is easily explained on the basis of \(\Delta E = Ac^2 \Delta M\), with high value of conversion coefficient, A. Normally a black hole have density of the order of \(10^{18} \text{ kg/m}^3\), and even light cannot escape from it, may be regarded as formed after numerous cycles.

It can be concluded that to attain such state Quasars must undergo series of large number of exceptionally intense compressions utilizing energy produced in itself. But energy used for this purpose (internal changes) is not taken in account in current measurements of luminous energy, implying that total energy (including measurable and immeasurable) is far higher than current estimates i.e. \(A_{qu}\) may be more than \(4 \times 10^{16}\) (it is only for luminous energy). This large amount of energy emitted by Quasar and other heavenly bodies is consistent with \(\Delta E = Ac^2 \Delta M\) with higher values of A. Similarly energy emitted by supernova and other bodies can be explained. Thus according to this equation \(\Delta E = Ac^2 \Delta M\) more energetic and abundant such explosions in universe are feasible and universe is more long lived compared to predictions of \(\Delta E = \Delta mc^2\) as for smaller mass huge amount of energy is emitted. The values of A for various heavenly bodies are shown in Table II.
Table II: The values of Conversion–Coefficients (A) for various heavenly bodies and phenomena.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Event emitting energy</th>
<th>Energy (Joules)</th>
<th>ΔM (kg)</th>
<th>$A = \Delta E / c^2 \Delta M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sun</td>
<td>3.89×10^{26}</td>
<td>4.32×10^9</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Gamma Ray Burst</td>
<td>10^{45}</td>
<td>4.32×10^9</td>
<td>2.57×10^{18}</td>
</tr>
<tr>
<td>3</td>
<td>Quasar</td>
<td>15.56×10^{41}</td>
<td>4.32×10^9</td>
<td>4×10^{16}</td>
</tr>
<tr>
<td>4</td>
<td>Supernova</td>
<td>5×10^{35}</td>
<td>4.32×10^9</td>
<td>1.286×10^9</td>
</tr>
<tr>
<td>5</td>
<td>Bright Star</td>
<td>2.73×10^{31}</td>
<td>4.32×10^9</td>
<td>7.02×10^4</td>
</tr>
<tr>
<td>6</td>
<td>Creation of mass universe before big bang (10^{55} kg)</td>
<td>10^{-4444}</td>
<td>4.32×10^9</td>
<td>2.568×10^{-4471}</td>
</tr>
</tbody>
</table>

3.0 Creation of mass of universe (10^{55} kg) before Big Bang

The Big Bang Theory assumes that initially ($t=0$) whole mass 10^{55} kg of universe was
ininitely compact and in singular state enclosing a space even smaller than an atomic particle
instantaneously exploded in gigantic detonation (various heavenly bodies figured) and ever since the
universe is expanding, Hawking [31]. How the whole mass of universe was formed and condensed to
ininitely compact point? How explosion was triggered causing expansion, reduction in temperature
and density drastically? Which source provided energy for these events? Why universe of mass
10^{55} kg, instead of getting into a point mass of density of undreamt magnitude did not start moving
away in the beginning itself? Like this that energy would have been saved which was consumed in
making universe a point mass and causing explosion. Thus Big Bang theory assumes excess energy in
the universe.

Currently, transformation of mass to energy or vice-versa is explained with $\Delta E = \Delta mc^2$ i.e. a gamma ray photon of energy at least 1.02 MeV (1.623×10^{-13} J) gives rise to electron and
positron pair (18.2×10^{-27} kg) is consistent with it. The mass of universe is estimated to be nearly
10^{55} kg, thus as above it must have been materialized from energy ($\Delta E = \Delta mc^2$) i.e. 9×10^{71} J. Further
additional energy (which may be infinitely large i.e. unimaginably high to be appraised) is required
to change mass 10^{55} kg into a point of exceedingly high density, and raise the temperature, trigger an
explosion and impart kinetic energy to it (even now accelerating outward continuously). Now it has
to be assumed that energy 9×10^{71} J and spectacular amount of additional energy (may be infinitely
large amount of energy for above events) as mentioned above is created from nothing or naught or
cipher automatically and spontaneously. The law of conservation of energy does not permit creation of
mass out of nothing at all (further on such highest scale), hence the law was not obeyed at that stage.
according to $\Delta E = \Delta mc^2$. How the energy of the order of $9 \times 10^{71}J$ was produced? How the energy materialized to mass (gamma ray only changes into electron –positron pair when passes near the field of nucleus) ? Thus conversion of energy to mass is conditional. All these intrigues are neither answered by detractors nor adherents of Big Bang Theory, and are open for plausible elucidation.

The general mass-energy inter convertibility equation $\Delta E = A c^2 \Delta M$ predicts that in this primordial bang (exceptionally-2 super special event), **diminishingly small pulse of energy**, say $10^{-4444} J$ (or less) equivalent to 2.4×10^{-4443} calorie (or less), can manifest itself in mass $10^{55}kg$ if the value of A is regarded 2.568×10^{-4471}. The energy $10^{-4444} J$ or less is regarded as to exist inherently in the universe, even when there was no material particle or when process of formation of space started.

The primordial value of conversion coefficient A_{uni} :

Now the value of various parameters can be written as

$$A_{uni} = \frac{10^{-4444}}{9 \times 10^{16} \times 4.32 \times 10^9} = 2.568 \times 10^{-4471}$$

or

$$\Delta E = A c^2 \Delta M = 2.568 \times 10^{-4471} c^2 \Delta M \quad (62)$$

Thus $\Delta E = A c^2 \Delta M$, is the first equation which at least theoretically predicts that universe (10^{55}kg) has been created from minuscule or immeasurably small amount of energy ($10^{-4444}J$ or less, which may be easily available compared to $9 \times 10^{71} J$). Whereas $\Delta E = \Delta mc^2$ predicts that mass of universe ($10^{55}kg$) has originated from mammoth energy i.e. $9 \times 10^{71} J$ (plus additional energy as cited above). Thus the generalised equation explains the origin of mass of universe with ease and simplicity; and in addition universe is more long lived than present estimates. Thus inter convertibility of energy to mass was there, but for small energy amount of mass created was much higher than $\Delta E = \Delta mc^2$.

4.0 Discovery of particle having mass less than predicted mass

Recent work at SLAC confirmed discovery of a new particle dubbed as Ds (2317) having mass 2,317 mega-electron volts. But this mass is far less than current estimates, is a mathematical puzzle [32]. This discrepancy can be explained with help of equation $\Delta E = A c^2 \Delta M$ with value of A more then one.

The annihilation of matter and antimatter or vice-versa is explained by $\Delta E = \Delta mc^2$ and experiments are being continuously conducted in this regard [32]. In case at some stage more anomalies (i.e. magnitude of mass converted into energy in annihilation of matter and antimatter or vice-versa) are observed less or more than predicted by $\Delta E = \Delta mc^2$ are observed then it would further serve as an evidence in favour of $\Delta E = A c^2 \Delta M$. Thus this equation acts as scientific stimulant and the latest trends in advances in research also favour the generalised form of mass–energy inconvertibility equation. In brief the comparison and conclusions of equations $\Delta E = A c^2 \Delta M$ and $\Delta E = \Delta mc^2$ are given on Table III.

Table III
9.0 Advantages of $\Delta E = Ac^2 \Delta M$ over $\Delta E = \Delta Mc^2$

(i) No theoretical limitations:
The derivation of generalized equation does not contradict the law of conservation of matter and energy in any way, rather generalizes it. The final results in Einstein’s derivation ($\Delta m = \Delta L/c^2$) depends upon the stage at which Binomial Theorem is applied, there is no such limitation in this case. Einstein’s derivation is based upon Eq. (1), which in solved and unsolved forms give different results i.e. is not consistent with dimensional homogeneity and algebraic results, the generalized equation is independent of any such constraints. The generalized form gives the same result irrespective of the fact that body is moving with uniform or non-uniform velocity or at rest. Einstein firstly derived $\Delta L = \Delta mc^2$, and generalized it for all possible energies as equation $\Delta E = \Delta mc^2$ (mass of a body is measure of its energy content), without taking in account such contributions i.e. in speculative way. It is not at all so with $\Delta E = Ac^2 \Delta M$.

(ii) $\Delta E = Ac^2 \Delta M$ explains all the results explained by Einstein’s equation:
If the value of conversion co-efficient A, is regarded as unity (as already mentioned the magnitude of A varies with inherent characteristics of the process, and thus has nature like Hubble’s constant, and constant of proportionality Newton’s second law of motion etc.) then $\Delta E = Ac^2 \Delta M$ reduces to $\Delta E = c^2 \Delta M$. Thus explains all the phenomena which Einstein’s equation does. If the value of A is different from unity i.e. less or more than unity then energy emitted can be less or more than predicted by $\Delta E = c^2 \Delta m$. This aspect compels or stimulates precision measurements in some new experiments in chemical reactions (which existed since ancient days but not conducted yet) for value of A less than unity. The value of A more than unity can be justified in case of energy emitted by, Gamma Ray Bursts, Quasars etc.

(iii) Proposals for variations in values of c:
There are some serious research proposals on experimental and theoretical fronts, that speed of light can be less or more than c. Davis [18] has advanced evidences that fine structure constant ($\alpha = e^2/4\pi c$) is increasing over cosmological timescales, implying slowing down of speed of light, c. Whereas
Wang [19] demonstrated gain-assisted linear anomalous dispersion to demonstrate superluminal light propagation in atomic caesium gas and group velocity of laser pulse exceeded c. There are many more such proposals. If these aspects materialized then energy emitted will be less or more than $\Delta E = \Delta mc^2$ (as value of c will be different), which is consistent with $\Delta E = Ac^2\Delta M$. In addition the generalized equation also predicts that energy can be equal to $\Delta E = \Delta mc^2$ due to presence of A, hence it is consistent with the above novel scientific proposals put forth by Davis, Wang and co-workers which is a continuous process.

(vi) Conditions on inter-conversions:

According to $\Delta E = \Delta mc^2$ the conversion of mass to energy or energy to mass it appears to be a unconditionally equally feasible process for every bit of mass, as there is no term which puts constraints for particular phenomena. The inter conversion is under certain characteristics conditions only, as materialization of gamma ray only takes place to electron–positron pair if it passes near the field of nucleus otherwise not. Similarly fission of nucleus is only caused by slow neutrons (0.025 MeV) purposely moderator (which reduces the velocity of neutron from 1-2MeV to 0.025 MeV) is used. But the most abundant iron does not undergo fission due to its characteristics; however iron does possess mass like uranium (^{235}U, ^{238}U and wood) and other fissile material. But according to $\Delta E = Ac^2\Delta M$, the conversion is conditional, and hence is more realistic to experiments. Thus on the whole this equation acts as scientific stimulant or catalyst as interprets phenomena from chemical reactions to characteristics of heavenly bodies.

Acknowledgement.

Author is highly indebted to Prof James Stolz, Dr C. K. Hu, Dr. Victor Khoma and various others for lively discussions and communications. Thanks are due to Prof. Ramaswamy for sending original papers of Einstein and other critics for useful comments.

REFERENCES.

1. Hasenohrl, F. Annalen der Physik, 15 344 (1904)
2. Einstein, A. Annalen der Physik, 17 891-921 (1905).

13. Sharma, A presented in various international conferences.

22. Planck, M *Annalen der Physik* 26, 1, 1908.

29. Vestergaard, M (Ohio State University, Department of Astronomy) in scientific communication.
32. The BaBar collaboration Observation of a Narrow Meson Decaying to Ds+pi0 at a Mass of 2.32 GeV/c^2.