Broad-band CW searches
(for isolated pulsars)
in LIGO and GEO S2 and S3 data

B. Allen, Y. Itoh,
M.A. Papa, X. Siemens

AEI and UWM

GWDAW-8 December 18, 2003
LIGO Scientific Collaboration, UW - Milwaukee
1LIGO-G030651-00-Z
What’s new (compared to S1)?

- **S1**: targeted search for a single pulsar J1939+2134
- **S2/S3**: moving towards a hierarchical CW search
 - Expand parameter space (but using coherent techniques)
 - Also developing hierarchical techniques in parallel
- **Two general types of CW search:**
 - Short observation time (~ half-day) all-sky, no spindown parameters, 150-450 Hz
 - Longer observation time, (perhaps) one spin-down parameter, small-area search (Galactic plane, SN remanents). There is a delicate trade-off between sensitivity, observation time (spanned and effective), parameter-space resolution, and source class. We hope to use grid techniques to employ thousands of CPUs for around a month.
- **Note that different choices might need to be made to produce the best upper limits.**
Large-scale CW search
with GriPhyN LIGO

• First attempted for the SuperComputing 2003 meeting last month. S. Koranda is our liason with the computer scientists.
• Entire S2 observation time, 200 Hz band, look at the Galactic Center
• Used approximately 1600 CPUS in the LSC data grid: www.lsc-group.phys.uwm.edu/lscdatagrid/details.html
 » AEI (Merlin, 360 CPUs)
 » Birmingham (Tsunami, 200 CPUs)
 » Cardiff (160 CPUs)
 » Caltech (200 CPUs)
 » Penn State (312 CPUs)
 » UTB (Lobizon, 73 CPUs)
 » UWM (Medusa, 296 CPUs)
• Also accessed some ‘non-LSC’ grid resources
• Still doesn’t work as well as we want: Globus Job Manager has trouble managing 10^5 or 10^6 compute jobs
Modifications from S1 code

- Internal loop to search over sky positions and spindown parameters
- More robust S_h estimation technique, using running median code by Mohanty, corrected for bias expected for an exponential distribution as function of window size (Krishnan)
- Use 30-min rather than 1-min SFTs. Need new calibration method (Siemens talk Friday)
Outlier due to large disturbance

- Power spectral density showing a large line near 406 Hz
- Corresponding values of the F statistic, showing the resulting outlier. This outlier corresponds to an ENORMOUS signal-to-noise ratio.
Large Outliers and how to veto them

- Graph shows F-statistic as a function of pulsar f_0
- Does not have profile expected from a real signal
- A real signal has a sharp peak, with a narrow width of < 10 bins, not this structure
- Itoh has implemented a χ^2 test (next talk) to distinguish these artifacts
Detection/Upper Limits

• We’ll do follow-up studies on significant ‘events’, using multiple IFOs
• Detection very unlikely, in which case we’ll use loudest event methods (as in S1 paper, also see J. Creighton talk, Friday) to set a upper limits
• Without vetos, the loudest event method will give much poorer upper limits
Pipeline including the χ^2 test

ComputeFStatistic
area $\{\alpha, \delta\}$
band $\{f_0\} \sim 0.5f_0$

"cluster finder": threshold F^*

$\alpha_{1,21}, \delta_{1,21}, N, \text{mean, std, max}$
$\alpha_{2,52}, \delta_{2,52}, N, \text{mean, std, max}$

Fstat shape test:

ComputeFStatistic + parameter estimation
$\equiv (\alpha_{1,21})$
small band around f_{01}
$\sim 0.1 \text{mHz}$

For each event we do this:

estimate of signal parameters and generation of $F(f_0)$

$P(0, \psi, \Phi) + \{E\}$

construct a signal χ_0

chi-square test

LOUDEST EVENT

UPPER LIMIT

ComputeFStatistic

(Fs)
Illustration of χ^2 test (Itoh talk)
Example: Setting Upper Limits

- Use 10h of the best H1 S2 data
- Search 15 x 15 degrees around Galactic Center
- Show maximum 2F value in 0.5 Hz band
- χ^2 test will reduce values further
- Each 2F value gives $h_0^{95\%}$ upper limit via Monte Carlo studies in that band.

262 - 264 Hz
2F (max) = 37.9
10^6 Monte Carlo
$h_0 \sim$ several
10^{-23} preliminary