Data analysis for LISA extreme mass ratio capture sources

Jonathan Gair, Caltech

In conjunction with: Leor Barack (UTB)
Teviet Creighton (Caltech/LIGO)
Curt Cutler (AEI)
Shane Larson (Caltech)
Sterl Phinney (Caltech)
Kip Thorne (Caltech)
Michele Vallisneri (Caltech/JPL)
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.
- Inspirals radiate in the LISA band for $M \sim 10^5 - 10^7 M_\odot$.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.
- Inspirals radiate in the LISA band for $M \sim 10^5 - 10^7 M_\odot$.
- Orbits are eccentric and exhibit ‘zoom and whirl’ behavior.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.

- Inspirals radiate in the LISA band for $M \sim 10^5 - 10^7 M_\odot$.

- Orbits are eccentric and exhibit ‘zoom and whirl’ behavior.

- Complicated gravitational waveforms provide a map of the spacetime geometry around spinning black holes.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.

- Inspirals radiate in the LISA band for $M \sim 10^5 - 10^7 M_\odot$.

- Orbits are eccentric and exhibit ‘zoom and whirl’ behavior.

- Complicated gravitational waveforms provide a map of the spacetime geometry around spinning black holes.

- Desire to detect many EMRI’s is driving the specification for the floor of the LISA noise curve.
Example waveform

![Example waveform](image_url)
Detection of EMRI’s

- The parameter space is very large, waveforms depend on 14 different parameters - \((M, S, m, e, r_p, \iota, \psi_0, \chi_0, \phi_0, \theta_K, \phi_K, \theta_s, \phi_s, D)\).
Detection of EMRI’s

- The parameter space is very large, waveforms depend on 14 different parameters - \((M, S, m, e, r_p, \iota, \psi_0, \chi_0, \phi_K, \phi_K, \theta_s, \phi_s, D)\).

- Waveform has \(\sim 10^5\) cycles in last year of inspiral. For matched filtering, might naively estimate \(\sim (10^5)^8 = 10^{40}\) templates needed.
Detection of EMRI’s

- The parameter space is very large, waveforms depend on 14 different parameters - \((M, S, m, e, r_p, \iota, \psi_0, \chi_0, \phi_0, \theta_K, \phi_K, \theta_s, \phi_s, D) \).

- Waveform has \(\sim 10^5 \) cycles in last year of inspiral. For matched filtering, might naively estimate \(\sim (10^5)^8 = 10^{40} \) templates needed.

- Search will be computationally limited. Envisage a mixed coherent/incoherent search. First stage is a coherent search of short segments of the data stream.
Detection of EMRI’s

- The parameter space is very large, waveforms depend on 14 different parameters - \((M, S', m, e, r_p, \iota, \psi_0, \chi_0, \phi_0, \theta_K, \phi_K, \theta_s, \phi_s, D)\).

- Waveform has \(\sim 10^5\) cycles in last year of inspiral. For matched filtering, might naïvely estimate \(\sim (10^5)^8 = 10^{40}\) templates needed.

- Search will be computationally limited. Envisage a mixed coherent/incoherent search. First stage is a coherent search of short segments of the data stream.

- Scoping out data analysis using kludged inspiral waveforms, as more accurate waveforms are presently unavailable.
Data analysis strategy

- Use Buonnano, Chen, Vallisneri trick to search 5 extrinsic parameters automatically. Use FFT to search time offset cheaply.
Data analysis strategy

- Use Buonnano, Chen, Vallisneri trick to search 5 extrinsic parameters automatically. Use FFT to search time offset cheaply.

- Incoherent stage involves summation along trajectories through the stacks. Maximize over the phase angles (ψ_0, χ_0) before stacking.
Data analysis strategy

- Use Buonnano, Chen, Vallisneri trick to search 5 extrinsic parameters automatically. Use FFT to search time offset cheaply.

- Incoherent stage involves summation along trajectories through the stacks. Maximize over the phase angles \((\psi_0, \chi_0)\) before stacking.

- Computational cost probably dominated by coherent stage. Assuming 50 Teraflops, we expect to be able to coherently search \(\sim 10^{10}\) templates. Monte Carlo simulations suggest coherent segments can be 2 – 3 weeks long.
Data analysis strategy

- Use Buonnano, Chen, Vallisneri trick to search 5 extrinsic parameters automatically. Use FFT to search time offset cheaply.

- Incoherent stage involves summation along trajectories through the stacks. Maximize over the phase angles \((\psi_0, \chi_0)\) before stacking.

- Computational cost probably dominated by coherent stage. Assuming 50 Teraflops, we expect to be able to coherently search \(\sim 10^{10}\) templates. Monte Carlo simulations suggest coherent segments can be 2 – 3 weeks long.

- Estimate optimal SNR required for detection by this method as \(SNR_{\text{thresh}} \sim 34\) for pessimistic case (3yrs/2wks), and \(SNR_{\text{thresh}} \sim 36\) for optimistic case (5yrs/3wks). Compare this to optimal SNR’s computed using synthetic LISA.
Astrophysical event rates

- Use galaxy luminosity function and \(L - \sigma / M - \sigma \) relations to estimate space density of black holes

\[
M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h_{65}^2 \text{ Mpc}^{-3}.
\]
Astrophysical event rates

- Use galaxy luminosity function and $L - \sigma / M - \sigma$ relations to estimate space density of black holes

\[
M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h_{65}^2 \text{Mpc}^{-3}.
\]

(1)

- Use capture rates from Freitag’s Milky Way simulation. Scale these to other galaxies by assuming an $M^{3/8}$ dependence.
Astrophysical event rates

- Use galaxy luminosity function and $L - \sigma / M - \sigma$ relations to estimate space density of black holes

\[M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h_{65}^2 \text{Mpc}^{-3}. \]

- Use capture rates from Freitag’s Milky Way simulation. Scale these to other galaxies by assuming an $M^{3/8}$ dependence.

- Conservative rates could be a factor of ~ 100 smaller for WDs, or a factor of ~ 10 smaller for black holes.
<table>
<thead>
<tr>
<th>M_\odot</th>
<th>space density $10^{-3} h_{65}^2 \text{Mpc}^{-3}$</th>
<th>Merger rate \mathcal{R} Gpc$^{-3} y^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_\odot</td>
<td>$0.6 M_\odot$ WD</td>
<td>$1.4 M_\odot$ MWD/NS</td>
</tr>
<tr>
<td>$10^{6.5\pm0.25}$</td>
<td>1.7</td>
<td>8.5</td>
</tr>
<tr>
<td>$10^{6.0\pm0.25}$</td>
<td>1.7</td>
<td>6</td>
</tr>
<tr>
<td>$10^{5.5\pm0.25}$</td>
<td>1.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table II: Merger rates
LISA detection rates

- Put this together to estimate expected number of detections. Consider four cases - optimistic/pessimistic and LISA/‘short LISA’. For $z > 1$, system evolution is uncertain and flat space extrapolation is no longer valid, so we quote $z < 1$ lower limits (*).

<table>
<thead>
<tr>
<th>M_\bullet</th>
<th>m</th>
<th>LISA</th>
<th>Short LISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Optimistic</td>
<td>Pessimistic</td>
</tr>
<tr>
<td>300 000</td>
<td>0.6</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>300 000</td>
<td>10</td>
<td>739</td>
<td>89</td>
</tr>
<tr>
<td>300 000</td>
<td>100</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td>1 000 000</td>
<td>0.6</td>
<td>94</td>
<td>9</td>
</tr>
<tr>
<td>1 000 000</td>
<td>10</td>
<td>1000*</td>
<td>800</td>
</tr>
<tr>
<td>1 000 000</td>
<td>100</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td>3 000 000</td>
<td>0.6</td>
<td>67</td>
<td>2</td>
</tr>
<tr>
<td>3 000 000</td>
<td>10</td>
<td>1700*</td>
<td>134</td>
</tr>
<tr>
<td>3 000 000</td>
<td>100</td>
<td>2*</td>
<td>1*</td>
</tr>
</tbody>
</table>
Summary

• Preliminary results are very promising - suggest we should detect $\sim 10^3$ EMRI’s during LISA’s lifetime.

• BH rates are robust to more conservative assumptions, although WDs become marginal.

• Remaining issues -
 ★ Firm up template counts, and optimize division of computational resources.
 ★ Comparison to accurate Teukolsky and self-force waveforms.
 ★ Effect of self-confusion on data analysis.
 ★ Improve estimates of capture rates and orbital parameter distributions.