Multi-band template analysis for CB search

Frédérique MARION for the VIRGO Collaboration
GWDGAW 2003
The Multi-Band Template Analysis

- Alternate matched filtering technique
 - designed to release stress on computing resources for CB search

- Split analysis in a few (2 - 3) frequency bands
 - coherent band combination provides result for full (virtual) template
 - for each band, number of templates and FFT size both reduced
 - CPU and storage requirements reduced
 » up to factors 100 for CPU and 500 for storage
 - for 3 bands, low minimal mass, low minimal frequency

- Built-in hierarchical search
 - each band can be analyzed independently
 - coherent combination grants unchanged SNR
MBTA today

- Prototype algorithm implementation ~ complete
 - filtering machinery
 - search algorithm
 - event clustering

- Interface to template computation and placement library
 - inspiral library provides several template generators
 - grid generation currently based on smallest elliptical isomatch contour
 » plan to try true isomatch contours

- VIRGO CITF E4 data
 - simple test analysis in realistic environment (Moriond 2003)

- Mock Data Challenges
 - validation process in well defined conditions
CITF E4 data test analysis (I)

- ~ 10 hours of quiet data
 - ITF & OMC locked

- Monitor horizon distance for a few masses
 - evidence bad periods
CITF E4 data test analysis (II)

- Single template search
 - (3 M\(_\odot\), 3 M\(_\odot\))
 - [50 Hz - 2 kHz]
- Probe ITF noise level
 - quiet enough after simple vetoes
- Compare 1 & 2 bands analyses
 - consistency checked
 - SNR correlation fairly good
Validation through MDCs

3 mock data challenges held in VIRGO in 2003

- data generated with SIESTA
 - based on CITF E4 spectrum (sensitivity mostly above 80 Hz)
 - non-stationarities & unlocked segments introduced in MDC III
 - simulated events from inspiral
 - various models, various SNR

- probe integration of software pieces needed for CB analysis
- probe algorithm performances
 - detection efficiency, SNR recovery
 - robustness to data flaws
Detection efficiency

- **Event selection**
 - event clustering allows to rely on SNR cut
 - regular noise fallout allows detection of events with SNR > ~7

- **Selection efficiency**
 - typically at 95% level for SNR \(\geq 7 \)
 - many studies to understand SNR loss budget
 - grid
 - template generator
 - lower and upper analysis frequency
2 bands vs 1 band

- **Systematic comparisons**
 - same efficiency
 - same purity
 - good SNR correlation

 \[
 \frac{SNR}{SNR} = 0.99 \pm 0.07
 \]

- **Increased computing efficiency**
 - limited due to narrow-band spectrum used in MDCs so far
CPU gain estimation

- Measure gain brought by multi-band analysis in realistic conditions
 - wide-band spectrum
 - VIRGO like
 - [40 Hz - 2 kHz] analysis
 - significant mass range
 - [1.35 \(M_\odot \), 5 \(M_\odot \)]
 - \(~ 10000\) templates
 - linux PC
 - P4, 2.4 GHz, 1GB memory

- Measure time needed to process 1800 s of data & memory
 - 1 band analysis
 - 2 bands analysis
 - no search, flat search, hierarchical search
Search cost evolution

- **Restricted mass range**
 - \([1.35 \, M_\odot, 1.45 \, M_\odot]\)

- **2 bands analysis**
 - no search
 - FFT cost only
 - flat search
 - bands always combined
 - hierarchical search
 - bands combined only if SNR \(\geq 5\) in one band

- **Best ratio to 1 band analysis (CPU)**
 - for optimal splitting frequency
 - 1/18 no search
 - 1/9 hierarchical search
Optimal search cost

- 2 bands analysis with 130 Hz splitting frequency
 - full mass range [1.35 M☉, 5 M☉]
 - 9707 templates
 - 1800 s of data

<table>
<thead>
<tr>
<th></th>
<th>Memory (MB)</th>
<th>Mem/T (MB)</th>
<th>Processing (s)</th>
<th>Proc/T (s)</th>
<th>Proc/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>No search</td>
<td>3819</td>
<td>0.39</td>
<td>6640</td>
<td>0.68</td>
<td>3.7</td>
</tr>
<tr>
<td>Hierarchical</td>
<td>11351</td>
<td>1.17</td>
<td>11972</td>
<td>1.23</td>
<td>6.7</td>
</tr>
<tr>
<td>Flat</td>
<td>10685</td>
<td>1.10</td>
<td>38863</td>
<td>4.00</td>
<td>21.6</td>
</tr>
</tbody>
</table>

- 7 similar CPUs would be needed for real time analysis
Plans for improvement

- **Not specific to MBTA**
 - go to FFTW3
 - optimize template placement
 - use increased number of models for templates

- **Specific to MBTA**
 - use single precision?
 - optimize recombination
 - on part of vectors
 - introduce consistency checks beforehand
 - restrain sensitivity to excess noise
 - go to 3 bands
 - technical tuning
 - initialization speed-up (association of virtual and real templates)
Conclusion

- Prototype implementation of MBTA available
- Tested both on real and simulated data
- Gain on analysis cost measured
 - factor ~ 10 now, room for improvement
- Online integration soon
 - MDC IV
 - real-time analysis of engineering run data