Constraining population synthesis (and binary black hole inspiral rates) using binary neutron stars

Richard O’Shaughnessy

GWDAW-8

12-17-2003
Outline

• Background and Motivation: Population synthesis
 – Fundamental approach to rates… but poor constraints (e.g. BBH merger rate)
 – New idea: Use neutron star rate as guide…

• It is possible!

• Constrain models for binary evolution

• Constrain BBH merger rate
 – Computational issues

• Results ➔ Present status and future plans
Population Synthesis

Models

Probabilities, rates, ...

Many parameters…

but

1) many have **narrow** ranges
2) dependence is smooth
3) …probably correlations too

\(n+1 \) dimensions

Scale factor
number of stars
... Properties at formation
metallicity of gas
initial mass distribution
...
Models for binary evolution
supernova kick magnitude
common envelope efficiency
...
Population Synthesis: Results

Despite best constraints on models

→ broad range of compact object merger rates:

Example:

Supernova kick magnitude
Idea:
NS Rate \rightarrow constraints

Empirical distribution of binary NS merger rate \rightarrow

1. Constraints on population synthesis models

2. Distribution of BBH merger rates

(assuming equal prior probabilities of models)
Computational issues I: Computation time

Computation time

- **Number of models we can evaluate:**
 \[
 (1 \text{ model/20 minutes/node}) \times (1 \text{ year}) \times 10^3 \text{ nodes} \\
 \approx 10^7 \text{ models}
 \]

- **Intensive naïve approach:**
 - 11 dimensional space
 - 10 points per dimension
 \[
 \Rightarrow 10^{11} \text{ models}
 \]
 \[
 \Rightarrow 10^4 \text{ years (!)}
 \]

... **but** some parameters have narrow ranges

- **Revised naïve approach:**
 - 10 points needed in each of 3 dimensions
 - 3 points needed in others
 \[
 \Rightarrow 10^7 \text{ models}
 \]

This is search by exhaustion
 \[
 \Rightarrow \text{can do even better...}
 \]
Application I: Constrain Model Parameters

Binary NS merger rate: 95% confidence interval

Generally: For any merger rate, n-1 dimensional manifold of model parameters consistent with rate

Application: Find confidence-interval boundaries in model space
Computational issues II: Root finding via genetic algorithms

• **Need**: Robust way to **find** n-1 dimensional manifold of **all** solutions

• **Solution**: Genetic algorithms
 (still under development)

 Example: Finding a single root
 – **Robust**: noisy functions, multiple maxima, high dimensions
 – **Efficient**: Exponential convergence
Application II: BBH merger rate distribution

Monte carlo:

1. Select many random models m_k (=equal prior probability)
2. Count number of models with BH merger rates in a bin B, weighted by binary NS rate:

$$\text{count}(B) = \sum_k \Theta(r_b(m_k) \in B) \frac{p_n(r_n(m_k))}{\text{const}}$$

\Rightarrow histogram
Probability distribution formulae

• Explicit formula:

\[A_n(m) = \int d\bar{m} \delta(r_n(\bar{m}) - r_n(m)) \]

\[p_m(m) = \frac{p_n(r_n(m))}{A_n(m)} \]

\[p_b(R_b) = \int d\bar{m} p_m(\bar{m}) \delta(R_b - r_b(\bar{m})) \]

Key

- \(r_n(m) \): rate of binary NS merger for model \(m \)
- \(r_b(m) \)
- \(p_n(r)dr \): probability for binary NS rate to be in \([r, r+dr]\)
Status

• Present status:
 – Constrain population synthesis
 • Algorithm development
 – Determine BH merger rate distribution
 • Monte Carlo accumulating…
 – Also…looking for simplifications (correlations, etc)

• Future plans:
 – Improvements
 • Include for prior probability distributions for parameters (e.g. supernova kick distribution)
 • Include more constraints (e.g. statistics of x-ray binaries; etc.)
 – Additions
 • Account for other known uncertainties in analysis (e.g. statistical fluctuations in rate calculations)
 – Long-term improvements (exploring):
 • Nonrandom (bayesian) searches [=maximize information obtained at each step]