Status of LIGO Data Analysis

Gabriela González
Department of Physics and Astronomy
Louisiana State University
for the LIGO Scientific Collaboration
Dec 17, 2003
GWDAW-8 meeting
LIGO schedule

Goal: integrate commissioning and data taking to obtain one year of integrated data at $h \sim 10^{-21}$ by end of 2006.

So far:

- **sensitivity progress**:
 - within a decade of the goal sensitivity,
 - two decades improvement in the last year.

- **data analysis progress**:
 - three science runs in the last two years
 - results from first science run (17 days),
 - analysis almost complete for second science run (59 days)
 - third science run (65 days) under way.
Data taking runs

• First LIGO Science Run S1 (Aug 23-Sep 9, 2002)
 ~100 hrs quadruple coincidence data
 Data analysis for inspiral, burst, continuous waves and stochastic sources completed.

• Second LIGO Science Run S2 (Feb 14-Apr 14, 2003)
 ~300 hrs triple coincidence,
 ~250 hrs with TAMA,
 ~150 hrs L1-ALLEGRO
 Data analysis in progress, preliminary results presented in this conference.

• Third LIGO Science Run (Oct 31, 2003-Jan 5, 2004) : in progress! (with TAMA, GEO)
A measure of progress

- Virgo cluster
- Milky Way
- M31
- M81
- BNS range
 - ~5 kpc
 - ~100 kpc
 - 0.9 Mpc
 - 3 Mpc

Dimensions:
- 0.9 Mpc
- ~100 kpc
- ~5 kpc
Duty cycles: S1

L1: 170 hrs, 42%
H1: 235 hrs, 58%
H2: 298 hrs, 73%

All three: 96 hrs, 23%
Duty cycles: S2

L1: 523 hrs, 37%
H1: 1040 hrs, 74%
H2: 818 hrs, 58%

All three: 312 hrs, 22%
Progress in commissioning

• **Done:**
 – full recycled optical configuration in all three detectors for length degrees of freedom
 – partial control of angular degrees of freedom
 – acoustic isolation at antisymmetric port
 – higher power (multiple photodetectors)
 – lower noise suspension controllers

• **To do:**
 – even higher power: thermal compensation, output mode cleaner
 – seismic retrofit at LLO
 – full control of angular degrees of freedom
 – beam centering
 – more acoustic mitigation
S1 results

Papers by the LIGO Science Collaboration (~370 authors, 40 institutions):

• “Detector Description and Performance for the First Coincident Observations between LIGO and GEO”, accepted in Nucl. Inst. Meth, gr-qc/0308043
• “Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors” gr-qc/0308050, accepted for publication in PRD
• “Analysis of LIGO data for gravitational waves from binary neutron stars”, gr-qc/0308069, being reviewed by PRD
• “First upper limits on gravitational wave bursts from LIGO”, gr-qc/0312056
• “Analysis of First LIGO Science Data for Stochastic Gravitational Waves”, in preparation
Results from S1
Upper Limits on Periodic Sources

J1939+2134
(642 Hz x 2=1284 Hz)
upper limits on amp: \(h < 2 \times 10^{-22} \)
upper limit on ellip: \(\varepsilon < 2.9 \times 10^{-4} \)

Previous limits for same system:
- 40m: \(~10^{-17}\)
- Glasgow detector: \(~10^{-20} (2^{nd} \text{ harm.})\)

At other frequencies,
bars have set up limits \(~3 \times 10^{-24}\)

Upper limit on ellipticity from spindown, \(\varepsilon < 3.8 \times 10^{-9} \)

gr-qc/0308050, Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors, The LIGO Scientific Collaboration: B.Abbott, et al, accepted for publication in PRD
Results from S1

Upper Limits on NS Inspiral Sources

S1: L1 | H1=289 hrs,
L1 & H1: 116 hrs;
R< 170/yr BNS in Milky Way
Equivalent Galaxy, with masses
between 1 and 3 Ms.

(Expected: ~10⁻⁵/yr)

Previous searches:
• LIGO 40m (’94, 25 hrs) 0.5/hr, 25 kpc
• TAMA300 DT6: 82/yr (1,038 hr, D<33 kpc)
• Glasgow-Garching ’89 (100 hrs) no events, ~1kpc
• IGEC ’00-’01 (2yrs): no events, ~10 kpc

gr-qc/0308069, Analysis of LIGO data for gravitational waves from
Results from S1
Upper Limits on Burst Sources

17 days yielded 55 hrs for 3x analysis:
<1.6 events/day for bursts
with duration 4-100 ms and frequencies 150-3000 Hz.
For Gaussians and SineGaussians,
\[h_{rss} \sim 10^{-17} - 10^{-19} / \sqrt{\text{Hz}} \]

Upper limit from bar results:
- IGEC 2000: <7/yr, \(H_t < 3.5 \times 10^{-21} / \text{Hz} \)
 ~1ms events, 3yrs yield 387d (2 or 3x), PRD68 (2003) 022001
- Astone et al. 2001: \(h \sim 2 \times 10^{-18} \) , 90d, 1/day, CQG 19 (2002) 5449-5463

First upper limits from LIGO on gravitational wave bursts, LIGO Scientific Collaboration: B. Abbott, et al, gr-qc/0312056
Results from S1
Upper Limits on Stochastic Background Sources

S1 (50 hrs, H2-L1): \(\Omega_0 h^2_{100} < 23 \)

Current best upper limits:

- **Inferred**: From Big Bang nucleosynthesis:
 \[\int \Omega_{GW}(f) \, d\ln f < 1 \times 10^{-5} \]

- **Measured**: Garching-Glasgow interferometers:
 \(\Omega_{GW}(f) < 3 \times 10^5 \)

- **Measured**: EXPLORER-NAUTILUS:
 \(\Omega_{GW}(907\text{Hz}) < 60 \)
Ongoing work

S2 analysis almost complete (see talks in this conference!), S3 run in progress. S3 will have LIGOx3, GEO, and TAMA!!

- **Inspiral Sources:**
 - Binary Black Holes!
 - Better background estimation for Binary Neutron Stars
 - MACHOs in the Galaxy

- **Pulsars:**
 - All known pulsars
 - Special searches for Crab, Sco-X1
 - Non targeted search

- **Bursts:**
 - Untriggered search: more time, better data, more methods: better ULs
 - Triggered search: GRBs
 - Modeled search: black hole ringdowns, supernova explosions
 - coincidence analysis with TAMA

- **Stochastic Background:**
 - Optimal filters, expect $\Omega \sim 0.01$ UL for H1-L1
 - ALLEGRO-L1 analysis
Conclusions

- Good progress toward design sensitivity
- Data analysis science results

The future:
- S2, S3 analysis ongoing
- 6-months long S4 starting in 2004 (?).
- One year of integrated data at design sensitivity before the end of 2006
- Advanced interferometer with dramatically improved sensitivity – 2007+