next up previous contents
Next: About this document ... Up: GRASP: a data analysis Previous: REFERENCES   Contents

Bibliography

1
W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vettering, Numerical recipes in C: the art of scientific computing, 2nd edition, Cambridge University Press.

2
Message Passing Interface Forum, MPI: a message passing interface standard, International Journal of Supercomputer Applications 8 3/4 1994.

3
W. Gropp and E. Lusk, User's Guide for mpich, a portable implementation of MPI, Technical Report ANL/MCS-TM-ANL-96/6, Argonne National Laboratory.

4
R. Balasubramanian, B.S. Sathyaprakash, and S.V. Dhurandhar, Gravitational waves from coalescing binaries: detection strategies and monte carlo estimation of parameters, Phys. Rev. D53 (1996) 3033-3055; Erratum in Phys. Rev. D54 (1996) 1860. Originally posted as gr-qc/9508011.

5
B.J. Owen, Search templates for gravitational waves from inspiraling binaries: choice of template spacing, Phys. Rev. D53 (1996) 6749-6761. Originally posted as gr-qc/9511032.

6
B.J. Owen and B.J. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, gr-qc/9808076.

7
L. Blanchet, B.R. Iyer, C.M. Will, and A.G. Wiseman, Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order, Class. Quantum Grav. 13, 575-584 (1996).

8
C.M. Will and A.G. Wiseman, Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order, Phys. Rev. D54 (1996) 4813-4848.

9
L. Blanchet, Phys. Rev. D54, 1417 (1996).

10
C. Cutler et al., The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Binaries, Phys. Rev. Lett. 70 (1993) 2984-2987.

11
C.W. Lincoln and C.M. Will, Coalescing binary systems of compact objects to (post)$^{5/2}$-Newtonian order: Late-time evolution and gravitational-radiation emission, Phys. Rev. D42 (1990) 1123-1143.

12
L. Blanchet, T. Damour, B.R. Iyer, C.M. Will, and A.G. Wiseman, Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett. 74 (1995) 3515-3518.

13
E. Flanagan and S. Hughes, Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown, Phys. Rev. D57, 4535-4565, (1998).

14
E. Flanagan and S. Hughes, Measuring gravitational waves from binary black hole coalescences. II. The waves' information and its extraction, with and without templates. Phys. Rev. D57, 4566-4587, (1998).

15
L. S. Finn and D. Chernoff, Observing binary inspiral in gravitational radiation: one interferometer. Phys. Rev. D47, 2198-2219, (1993).

16
K. S. Thorne, Private communication to Scott Hughes.

17
Thorne's estimate of 1.04 is off by 6% because it uses a fit to the probability distribution $P(\Theta^2 > x^2)$ (defined in [15]) which is not accurate enough to reliably compute the $x^2$ moment of that distribution.

18
D. Markovic, Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing compact binaries, Phys. Rev. D48 4738-4756 (1993).

19
D.W. Hogg, notes, Manual on Cosmological Distance Measures, available from http://www.sns.ias.edu/$\sim$hogg. http://www.sns.ias.edu/ hogg

20
E.W. Kolb and M.S. Turner, The Early Universe, published by Addison Wesley, 1990.

21
C. Cutler and É.E. Flanagan Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? Phys. Rev. D49 2658-2697 (1994).

22
S.Droz, D.J. Knapp, E. Poisson, B.J. Owen available at
http://xxx.lanl.gov/abs/gr-qc/9901076. http://xxx.lanl.gov/abs/gr-qc/9901076

23
E. Poisson and C. M. Will, Phys. Rev. D52, 848 (1995).

24
J. Mathews and R.L. Walker, Mathematical Methods of Physics, Second Edition, Addison-Wesley, 1970.

25
F. Echeverria Gravitational-wave measurements of the mass and angular momentum of a black hole, Phys. Rev. D40 3194-3203 (1989).

26
J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F. Rohrlich, and E.C.G. Sudarshan Spin-$s$ spherical harmonics and , J. Math. Phys. 8 2155-2161 (1967).

27
E.W. Leaver An analytic representation for the quasi-normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A402 (1985).

28
H. Onozawa Detailed study of quasinormal frequencies of the Kerr black hole, Phys. Rev. D55 3593-3602 (1997).

29
W.H. Press and S.A. Teukolsky (Oct 1973) Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric, Astrophys. J. 185 649-673 (1973).

30
S.A. Teukolsky Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations, Astrophys. J. 185 635-647 (1973).

31
A.D. Gillespie, Thermal Noise in the Initial LIGO Interferometers, Caltech PhD thesis, 1995.

32
T.T. Lyons, An optically recombined laser interferometer for gravitational wave detection, Caltech PhD thesis, 1997.

33
Warren G. Anderson and R. Balasubramanian, Time-Frequency Detection of Gravitational Waves, Submitted for publication, http://xxx.lanl.gov/abs/gr-qc/9905023/ http://xxx.lanl.gov/abs/gr-qc/9905023/.

34
C. Steger, computer code DETECT-LINES 1.2, Technische Universitat München, München Germany, 1996, available from
ftp://ftp9.informatik.tu-muenchen.de/pub/detect-lines/detect-lines-1.2.tar.gz ftp://ftp9.informatik.tu-muenchen.de/pub/detect-lines/detect-lines-1.2.tar.gz.

35
C. Steger, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 113, (1998).

36
B. Allen, The stochastic gravity-wave background: sources and detection, in Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School on Astrophysical Sources of Gravitational Radiation, eds. J-A. Marck and J-P. Lasota, (Cambridge University Press, Cambridge, England, 1997) pages 373-417.

37
See equations (4.13) and (4.14) in Spacecraft attitude determination and control, Ed. James R. Wortz, (D. Reidel Publishing Co., Boston, 1985).

38
A. Abramovici et al., Science 256, 325 (1992).

39
D.J. Thomson, Spectrum estimation and harmonic analysis, Proceedings of the IEEE, 70, 1055-96, (1982).

40
D.B. Percival and A.T. Walden, Spectral analysis for physical applications, first edition, Cambridge University Press, (1993).

41
J.M. Lees and J. Park, Multiple-taper spectral analysis: A stand-alone C subroutine, Computers and Geology 21, 199-236.

42
D. Lai and S. L. Shapiro, Astrophys. J. 442, 259-272, (1995).

43
S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, (Yale University Press, New Haven, 1969).

44
Dong Lai, Personal Communication.

45
The data files for the amplitueds $A_{lm}(v)$ and the luminosity function $P(v)$ were kindly provided by Eric Poisson (poisson@physics.uoguelph.ca).

46
S. Droz and E. Poisson, Gravitational waves from inspiraling compact binaries: Second post Newtonian waveforms as search templates, Phys. Rev. D57, 4449 (1997).

47
Benoit Mours, Frame Library User's Manual, version 3.60, http://wwwlapp.in2p3.fr/virgo/FrameL/ http://wwwlapp.in2p3.fr/virgo/FrameL/, email: mours@lapp.in2p3.fr, VIR-MAN-LAP-5400-103.

48
B. Allen, K. Blackburn, P. Brady, J. Creighton, T. Creighton, S. Droz, A. Gillespie, S. Hughes, S. Kawamura, T. Lyons, J. Mason, B.J. Owen, F. Raab, M. Regehr, B. Sathyaprakash, R.L. Savage, Jr., S. Whitcomb, A.G. Wiseman, Observational limit on gravitational waves from binary neutron stars in the Galaxy, Phys. Rev. Lett. 83, 1498 (1999). Also available from: http://xxx.lanl.gov/abs/gr-qc/9903108http://xxx.lanl.gov/abs/gr-qc/9903108.

49
Anninos, Brandt, and Walker, New orthogonal body-fitting coordinates for colliding black-hole spacetimes, Phys. Rev. D 57 6158-6167 (1998).



Bruce Allen 2000-11-19