There are many situations of interest in which data are contaminated by the environment. Often this contamination is understood, and by monitoring the environment it is possible to ``clean up" or ``reduce" the data, by subtracting the effects of the environment from the signal or signals of interest. In the case of the data stream from an interferometric gravitational radiation detector, the signal of interest is the differential displacement of suspended test masses. This displacement arises from gravitational waves but also has contributions arising from other contaminating sources, such as the shaking of the optical tables (seismic noise) and forces due to ambient environmental magnetic fields. The key point is that the gravitational waves are not correlated with any of these environmental artifacts.

The method implemented here works by estimating the linear transfer
function between the IFO_DMRO channel and specified environmental
channels on the basis of the correlations over a certain bandwidth in
Fourier space. The method is explained in detail in the paper
`*Automatic cross-talk removal from multi-channel data*'
(WISC-MILW-99-TH-04)^{2}Here we will just give a very brief overview to introduce the quantities calculated.

We denote the channel of interest, normally the InterFerOmeter Differential Mode Read-out (IFO_DMRO), by or . The other sampled channels consist of environmental and instrumental monitors which we denote . We assume that all fast channels have been decimated so that all channels are sampled at the same (slow) rate, Hz for the November 1994 40-meter data.

We assume that the contribution of channel to channel is
described by an (unknown!) linear transfer function . The
basic idea of the method is to use the data to estimate the transfer
functions . For the reasons discussed in the paper, we work
with the data in Fourier space. The transfer function is estimated by
averaging over a frequency band, that is a given number of frequency
bins. The number of bins in any band is denoted by in
the cited paper and `correlation_width` in
the programs below. The method assumes that can be well
approximated by a *complex constant* within each frequency band,
in other words that the transfer function
does not vary rapidly over the frequency bandwidth
where is total time of the data section under consideration.
The choices 32, 64 and 128 appear most appropriate for for the
40-meter data.

Within a given band, , the Fourier components of the field may be thought
of as the components of an -dimensional vector,
.
Correlation between two channels (or the auto-correlation of
a channel with itself) may be expressed by the standard inner product
(no summation over ). Our assumption that
is constant over each band means that the `true' channel of interest
(the IFO_DMRO channel with environmental influences subtracted) can
be written

(5.1.27) |

(5.1.28) |

To understand the origin of the `improvement' it is also convenient to
study the best estimate that can be obtained using any given single
environmental channel. Thus we define

(5.1.29) |

(5.1.30) |