A Radiometer for a Stochastic Background of Gravitational Radiation

Robert Ward
for the
LIGO Scientific Collaboration

Amaldi 7
Sydney, Australia
July 2007
GW Radiometer Motivation

- Stochastic GW Background due to Astrophysical Sources?
 - Not isotropic if dominated by nearby sources
 - Do a *Targeted Stochastic Search* with LIGO

- Source position information from
 - Signal time delay between different sites (sidereal time dependent)
 - Sidereal variation of the single detector acceptance

⇒ Time-Shift and Cross-Correlate!

⇒ Effectively a Radiometer for Gravitational Waves
The Radiometer

\[Y(\Omega) = \int dt \int dt' s_1(t)s_2(t') \tilde{Q}_{t_{\text{sidereal}}}(t-t') \]

\[\sigma^2(\Omega) \approx \frac{T}{4} (Q_{t_{\text{sidereal}}}, Q_{t_{\text{sidereal}}}) \]

\[Q_{t_{\text{sidereal}}}(f) \propto \frac{H(f)\gamma_{t_{\text{sidereal}}}(f)}{P_1(f)P_2(f)} \]

\[H(f) \text{ is the source spectrum} \]

Detailed description in gr-qc/0510096
Data Analysis Flow

Detector 1
60 sec data segments

- Downsample, HP filter, Calibrate, Mask Freq: 60 Hz, 120 Hz, …; Pulsars, …
- Estimate PSD (data from \(i-1, i+1\) intervals)
 - Hann window, FFT
- Compute optimal filter \(Q_i\) and theoretical variance \(\sigma_i^2\)
 - Compute Cross Correlation spectrum & InvFFT (=CC time series)
 - Read out CC time series for each pixel (time shifted and scaled)
 - Optimally combine data from all segments for each pixel

Detector 2
60 sec data segments

- Downsample, HP filter, Calibrate, Mask Freq: 60 Hz, 120 Hz, …; Pulsars, …
- Estimate PSD (data from \(i-1, i+1\) intervals)
 - Hann window, FFT
- Inject simulated signal into data

\(i = 1, 2, 3, \ldots\)
LIGO’s Fourth Science Run (S4)

\[H_{\beta=-3}(f) \propto \left(\frac{100 \text{Hz}}{f} \right)^3 \]

(corresponds to scale-invariant primordial perturbation spectrum)

FIG. 6: **S4 Result:** Map of the 90% confidence level Bayesian upper limit on \(H_\beta \) for \(\beta = -3 \). The upper limit varies between \(1.2 \times 10^{-48} \text{Hz}^{-1} \left(100 \text{ Hz}/f\right)^3 \) and \(1.2 \times 10^{-47} \text{Hz}^{-1} \left(100 \text{ Hz}/f\right)^3 \), depending on the position in the sky. All fluctuations are consistent with the expected noise.
FIG. 7: **S4 Result:** Map of the 90% confidence level Bayesian upper limit on H_β for $\beta = 0$. The upper limit varies between 8.5×10^{-49} Hz$^{-1}$ and 6.1×10^{-48} Hz$^{-1}$ depending on the position in the sky.

$$H_{90\%} = (0.85 - 6.1) \times 10^{-48} \text{ Hz}^{-1}$$
Narrowband Radiometer
Sco-X1 (nearest LMXB), S4

FIG. 9: S4 Result for Sco-X1: The 90% confidence Bayesian upper limit as a function of frequency - marginalized over the calibration uncertainty. The standard deviation (one sigma error bar) is shown in blue.

Consistent with no signal
But the maps are convolved

\[\propto \langle Y_\Omega Y_{\Omega'} \rangle \]
Point Spread Function
Convolution: Inject a diffuse source map
Deconvolution:
Invert the covariance matrix to get a maximum likelihood map
Or use a Spherical Harmonic Basis: Maximum Likelihood Estimation

- Rotational Symmetry \Rightarrow covariance $= 0$ for $m \neq m'$
- different l’s at the same m are correlated
- Symmetry broken due to diurnal sensitivity variations

Advantage of a smaller (tens instead of thousands), block diagonal, covariance matrix \Rightarrow lower computational cost.

Being actively pursued by the stochastic analysis group.
Blinded Data from S5

time shift the detector streams by more than the light travel time between detectors → no true gw signal remains

With only the first 4 months of S5, upper limit sensitivity bound can reach (for $H(f) = \text{const (}\beta=0)\) :

$$H_{90\%} = (0.82 - 9.9) \times 10^{-49} \text{ Hz}^{-1}$$

already 10x better than S4 result

July 13, 2007

Robert Ward, Caltech
Finding for another detection metric: autocorrelation at each declination

- NOT a standard 2-point correlation function
 - Can’t because of variability of point spread function with sky position
- $X(\Delta RA)$ at each declination (integral is over RA)
- Y_i’s are point estimates of GW strain
- w_i’s are statistical weights of each point on the sky (1st attempt: use reciprocal of theoretical sigma)
- Overall normalization is $X(0)$

For all i,j separated by ΔRA

$$X(\Delta RA) = \sum_{i,j} w_i Y_i Y_j w_j$$

$$w_i = \frac{\langle \sigma \rangle_i}{\sigma_i}$$
Autocorrelation at each declination

- First 4 months of S5, blinded
- $H(f) = \text{const}$
- Working on a “detection metric”—what quantifies absence/presence of signal?
Average the autocorrelations at each declination, over all declinations

In the absence of signal, this can tell us about the resolving power of the instrument; consistent with other estimates.

\[\frac{\lambda}{D} \frac{500\,Hz}{3000\,km} \Rightarrow 11^\circ \]

diffraction limited gw astronomy

Robert Ward, Caltech

July 13, 2007
Because the IFOs still work better at night, the region of best sensitivity moves across the sky as the earth goes around the sun.
The Near Future

- Projected sensitivity increase and longer run time means we should surpass BBN bound during S5
- Narrowband searches from more directions (Virgo cluster, galactic plane)
- Continue development of maximum likelihood analysis, in both point-source (pixel) basis and spherical harmonic basis.
some questions for reviewers

- I’ve included still-blind results from the first 4 months of S5, which reveal sensitivity and data quality. If I redo these results with more data (longer averaging for better sensitivity), can I replace them in the slides?
- Can I add a blinded narrow-band result (repeat of Sco-X1 search) to show sensitivity increase?
- should I add some more general introduction/motivation at the beginning?
- advice on what to cut first if this is too long
The End
Sigma Ratio DQ cut

- Don’t include any 60 second segments whose PSD gives a 20% larger sigma than neighboring PSD’s to reduce effects of nonstationarity.
- This rejects 1.80% of the data
- 1st 4 months of S5